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Abstract
Texture parameter analysis of test object (phantom)

magnetic resonance images (MRI) is described in this
paper. The test objects are made of different-porosity
reticulated foam embedded in agarose gel. Optical images
are analyzed in this paper, split into classes differing by
the foam pore size. First- and second-order statistical
features are computed. Their usefulness to texture class
discrimination is evaluated using the ratio F of between-
classes variance to within-classes variance. The effects of
image normalization on F, and mutual dependence
between features are investigated.

1. Introduction
The objective of this paper is to present results of a preliminary study on texture

analysis of MR phantom images. Prior studies have been carried out [3] to
investigate whether texture measurements are transportable between magnetic
resonance centers and to make firm conclusions as to the machine settings and
sequence selection required. Development of quantitative methods of texture
analysis of magnetic resonance images is now the subject of COST B11 European
Community project scheduled for the years 1998-2002 [2]. The aim of this project
is to develop methods for reliable discrimination of different kinds of tissue in MR
images, independent of scanner type, parameters or settings.
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2. Test object images
The use of texture analysis in magnetic resonance imaging requires the

availability of texture test objects for use in standardization of in vivo
measurements. The reticulated foam materials were used in this study. Optical
images of these objects were digitally recorded. They contain scans of cross-
section of two different-porosity foams (Fig. 1). From each optical image, 42 non-
overlapping samples of size 23x23 pixels were taken, resulting in 2 texture
classes, each of 42 samples.

3. Results and discussion
A number of subroutines in Matlab and a specialized MS Windows application

program MaZda [2] were written to compute a variety of texture features
(parameters). The programs were applied to the recorded MR and optical images
to compute texture features and thus characterize texture properties.

a)  b)  c)
Fig. 1 a) MR slice image of tubular phantoms; b), c) optical images of reticulated

foam materials: b) Foam1 – large pore size, b) Foam2 – medium pore size.

To investigate any feature ability to discriminate between different pore-size
textures, the following F coefficient was used:

V
DF = (1)

that represents the ratio of between-classes feature variance D to within-classes
feature variance V [4]. For each sample (region of interest – ROI) of an optical
image, the following 254 features were calculated:
• H: 9 histogram-based (mean, variance, skewness, kurtosis and five histogram

percentiles for 1%, 10%, 50%, 90%, and 99%: #1 – #9),
• GR: 5 gradient-based features (absolute gradient mean, variance, skewness,

kurtosis, and percentage of non-zero gradients: #10 – #14),
• RL: 20 run-length matrix-based features (short run emphasis inverse moment,

long run emphasis moment, gray level nonuniformity, run length
nonuniformity and fraction of image in runs, separately for horizontal,
vertical, 45° and 135° directions: #15 – #34),

• CO: 220 co-occurrence matrix based features (11 features defined in
(Haralick 1973) calculated for matrices constructed for five distances between



image pixels (d=1, 2, 3, 4 and 5), and for the four directions as in the case of
RL features: #35 – #254.

Except for the histogram-based features, each ROI image was quantized to 64
gray levels (6-bit word-length) prior to computation of the texture parameters.

        

0

2

4

6

8

1 0

1 2

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

F e a t u r e  n u m b e r

F

Fig. 2  F coefficient for H, GR, RL and CO features (no ROI normalization).

As presented in Fig. 2 for raw images, only 4 features from the whole set (#37,
#48, #59, and #70) represent relatively high value of F coefficient (e.g. F ≥ 6.0).
They are Correlation parameters calculated for the co-occurrence matrix
determined at d = 1, for the four main directions. Other features possess lower F
values, which means that they are not much useful to make distinction between the
two classes of the foam texture, cf. Table 1.
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Fig. 3 F coefficient for H, GR, RL and CO features (‘±3 sigma’ normalization).

To investigate whether image normalization affects feature ability to allow
discrimination between the image classes, two normalization schemes were
considered. For both schemes, the image histogram was first computed within
each ROI. Then, the image mean µ and standard deviation σ were found. For the
‘±3 sigma’ scheme, the image intensity levels were limited to the range from
fmin=µ-3σ to fmax=µ+3σ. The intensity range (fmax–fmin) was then quantized using
6-bit word-length prior to computation of GR, RL and CO parameters. For the
‘1%–99%’ scheme in turn, the values of fmin and fmax were found as corresponding
to, respectively, 1% and 99% of cumulative image histogram within ROI.

The F coefficient distribution among the different texture features, obtained for
the ‘±3 sigma’ normalization scheme is illustrated in Fig. 3. Indeed, for this
scheme, the number of features that have high F (F ≥ 6.0) increased significantly



to 12. An intermediate number of 9 such features was obtained for ‘1%−99%’
scheme. Numerical results of this experiment are presented in Table 1.

As can be observed in Table 1, all the features with relatively high value of F
are derived from CO matrix. What is more, only one of them (Sum Variance, #96)
is computed for distance between image pixels larger then one. This means that
larger distances do not produce useful parameters for discrimination of the
discussed textures. This can be explained by analysis of Fig. 4. It shows cross-
sections of correlation function calculated for sample ROI for Foam1 and Foam2
images. This function rapidly decreases when distance between pixels is larger
then one. This suggest that there is no important information concerning analyzed
images contained in CO matrices constructed for distances between image pixels
larger then one.

Table 1
F coefficient for different normalization schemes (shaded areas: F>6).

No. Feature definition
Feature
number

F, no
normalization

F
‘±±±±3 sigma’

F
‘1%–99%’

1 (1,0) Contrast 36 0.2 9.0 2.4
2 (1,0) Correlation 37 8.7 8.6 8.8
3 (1,0) Inv. Differential Moment 39 3.5 8.7 5.5
4 (1,0) Sum Variance 41 4.1 7.1 7.0
5 (1,0) Differential Entropy 45 0.0 8.0 3.6
6 (0,1) Contrast 47 0.1 10.4 2.9
7 (0,1) Correlation 48 10.6 10.7 10.9
8 (0,1) Sum Variance 52 4.4 9.6 7.5
9 (0,1) Differential Entropy 56 0.1 9.0 3.4
10 (1,1) Correlation 59 6.1 6.2 6.1
11 (1,1) Sum Variance 63 4.0 5.6 6.3
12 (1,-1) Contrast 69 0.8 6.7 0.8
13 (1,-1) Correlation 70 6.6 6.6 6.7
14 (1,-1) Sum Variance 74 4.1 5.3 6.3
15 (0,2) Sum Variance 96 4.2 4.7 7.3

It is evident from Figs. 2 and 3 that the number of useful features depends
significantly on image normalization. To explain this effect, one should refer to
image properties as seen in Fig. 1. Namely, the images investigated, especially
‘Foam2’, show some nonuniformity of their local mean and variance. It can be
found that relative standard deviation σµ of image mean µ, computed over 48
ROIs, is equal to σµ/µ=12.2% for ‘Foam1’ and as much as σµ/µ=24.2% for
Foam2. Similarly, the corresponding ratios related to image variance are equal to
15.8% for ‘Foam1’ and 29.1% for ‘Foam2’. (At the same time, F coefficient for
image mean µ is equal to 1.6 and that for image variance σ2 equals to 3.4.) One
can then expect that if there exist texture features, which possess high correlation
to µ and σ2, and image is not normalized, then such features will demonstrate non-
zero values of F even if they do not carry any information about texture properties
other than included in µ and σ2. At the same time, their F values will be rather
moderate, as the F values for µ and σ2 are. Such features will be redundant in the



considered application. Moreover, high correlation to µ and σ2 may mask an
existing ability of a feature to discriminate the texture classes.

To find out whether there are indeed features highly correlated to µ and σ2 for
the two textures in Fig. 1, the correlation coefficients for of each of the 254
features with both µ and σ2 were calculated – without, and with ‘±3 sigma’ image
normalization. Calculation results are presented in Fig. 5. As can be observed, for
the non-normalized images most features are highly correlated with image mean.
Only the Correlation feature derived from CO matrices is relatively independent
of it (Fig. 5a). After ‘±3 sigma’ normalization, the correlation coefficient value
significantly decreases in case of both textures (Fig. 5b). Similar observation can
be made for image variance, which is highly correlated to image mean in the case
of discussed images (correlation coefficient equal to 0.89 and 0.97, respectively
for Foam1 and Foam2).

   a)       b)
               Fig. 4 Cross-section of correlation function for a sample ROI:

a) Foam1, b) Foam2.

      a)      b) 
Fig. 5  Feature correlation to image mean: a) no normalization, b) ‘±3 sigma’

normalization, obtained for Foam2 image.

      a)      b)



Fig. 6 Absolute value of correlation coefficient between parameters from Table 1
and a) (1,0) Inverse Differential Moment, b) (1,0) Correlation,

° no normalization, + “±3 sigma”, • “1%-99%”.
More detailed analysis shows that standard deviation of the mean of Foam1

equals to 7.8, 0.2, and 4.5, respectively for ‘no normalization’, ‘±3 sigma’, and
‘1%-99%’ schemes. The corresponding figures for ‘Foam2’ are equal to 11.3, 0.2,
and 3.5. Thus ‘±3 sigma’ scheme provides the best stabilization of the image mean
value within the (fmax–fmin) window. This results in the highest number of the
discriminative features (Fig. 3), thanks to elimination of the effect of their
correlation to mean and variance [µ=0 and σ2 is constant relative the (fmax–fmin)
range for ‘±3 sigma’ scheme]. Table 1 indicates that CO Correlation does not
indeed depend on image normalization.

On the other hand, the ‘±3 sigma’ normalization causes increase of correlation
between texture parameters. This is shown in Fig. 6. As can be observed,
correlation between sample parameters and other texture features is relatively high
for ‘±3 sigma’ normalization in the case of both textures. Similar results can be
observed for other parameters from Table 1, except for Sum Variance, which can
be explained based on this feature definition [1]. This means, that the number of
texture parameters useful for texture discriminations is in fact limited due to
relatively high correlation between them.

4. Conclusions
Initial evaluation of statistical parameter effectiveness to discriminate between

two test-foam objects for MRI has been carried out. Surprisingly, only a few
among more than 200 popular features turned out useful to distinguish the
otherwise quite distinct (at least for humans) textures. This indicates the need for
carrying on research work on better understanding of texture properties and for
finding new feature definitions that would provide means for firm discrimination
of different images of biological origin. The significance of image normalization
prior to texture parameter computation has been demonstrated. For the future, the
following investigations are planned:
• consideration of new texture features (e.g. wavelet-based),
• analysis of noise influence on classification accuracy for different features,
• further development of MaZda software used for feature calculation,
• development of feature selection methods for MR image texture,
• extension of the results to texture classification of biological tissue.
It is expected that the new computer-based texture analysis techniques will
automate part of the medical diagnosis process, assuring its objectivity and
repeatability.
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