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  Abstract: The temporal correlation based method for
image texture segmentation is presented. It uses locally
connected network of oscillators, which are able to
synchronise while image object is detected, and
desynchronise for other objects. The mathematical
oscillator model is described. Examples of numerical
simulation of oscillator network for segmentation of
natural textures along with feature selection method is
also presented.

1. Introduction
Segmentation of image texture is very important but

still very difficult task of image analysis and image
understanding in machine vision. Visual texture is
present in a wide spectrum of different images and plays
significant role in image scene analysis.

This paper briefly describes one of the recently
emerged segmentation methods, based on temporal
correlation.  This technique was first applied for texture
segmentation in [1]. In this study, more general method
for texture feature selection is proposed, along with
different formulation of oscillator weights.

The temporal correlation was developed by analysing
behaviour of human brain. It was stated, that an object is
represented by the temporal correlation of the firing
activities of the neural cells coding different features of
the object sensed. The temporal correlation can be
encoded using neural oscillators, where each oscillator
encodes a single feature of an object. In the simplest
case this feature can be object pixel intensity. Then a
given object is represented by group of oscillators,
which are oscillating in synchrony, while other objects
are represented by different oscillator groups, which are
desynchronised. Such oscillator groups form a network
called LEGION (locally excitatory globally inhibitory
oscillators network), proposed in [8,9].

2. Model description
Each oscillator in LEGION network is defined by a

set of two differential equations:

Fig.1. Nullclines of eq. (1)
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where x is referred to as an excitatory variable while y is
an inhibitory variable. IT is a total stimulation of an
oscillator and ε, γ, β are parameters. The x-nullcline is a
cubic curve while the y-nullcline is a sigmoid function as
shown in Fig.1. If IT >0, then equation (1) possesses
periodic solution, represented by bold line shown in Fig.
1. The operating point moves along this line, from left
branch (LB, representing so-called silent phase), then
jumping from left knee (LK) to right branch (RB,
representing so-called active phase), next reaching right
knee (RK) and jumping again to left branch. If IT ≤0, the
oscillator is inactive (produces no oscillations).
Oscillators defined by (1) are connected together to form
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a two-dimensional network, in the simplest case each
oscillator is connected only to its four nearest neighbours
(Fig. 2) (larger neighbourhood sizes are also possible).
Network dimensions are equal to dimensions of analysed
image and each oscillator represents single image pixel.
Each oscillator in the network is connected with so-
called global inhibitor (GI in Fig. 2), which receives
information from oscillators and in turn eventually can
inhibit whole network. Generally, the total oscillator
stimulation IT is given by equation (2):
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where Iin represents external stimulation to the oscillator
(image pixel value). Wik are synaptic dynamic weights
connecting oscillator k and i. Number of these weights
depends on neighbourhood size N(i). In the case
considered here, N(i) contains eight nearest neighbours
of kth oscillator (except for these located on network
boundaries). Due to these local excitatory connections,
an active oscillator spreads its activity over the whole
oscillator group, which represent image object. This
provides synchronisation of the whole group θx is a
threshold, above which oscillator k can be affected by its
neighbours. H is a Heaviside function, it is equal to one
if its argument is higher then zero and zero otherwise. Wz
is a weight (with negative value) of inhibitor z, which is
equal one if at least one network oscillator is in active
phase (x>0) and it is equal to zero otherwise. The role of
global inhibitor is to provide desynchronization of
oscillator groups representing different objects from this
one which is actually being under synchronisation.
Global inhibitor will not affect any synchronised
oscillator group because the sum in (2) has greater value
then Wz.

The function p (so called lateral potential) is used to
remove noise from image. For oscillator i, it is defined
as
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where λ, µ are parameters and Tik – permanent
connection weights from oscillator k to i. If the weighted
sum of active neighbours of given oscillator exceeds a
threshold θp then p approaches to 1 (λ>>µε), otherwise it
relaxes to 0. If p is greater than a threshold θ, then the
oscillator receives stimulation. To obtain this, a large
number of its neighbours must exceed θx at the some
time. Thus only these oscillators which are surrounded
by an adequately large number of active oscillators will
be able to maintain p high. These oscillators are so
called leaders. If in a small block no oscillator becomes
a leader, this block will stop oscillating after a beginning
period, because the Heaviside function in (2) will
become zero and each oscillator in the block become
unstimulated. Examples of image segmentation based on
equations (1)-(3) are presented in [5,6].

3. Feature selection
One of the most important problems in segmentation

of textured images is feature selection. There is no unique
feature set capable to proper classification of large
number of different textures. Feature selection should be
performed separately for each texture segmentation task.
In this study the following texture feature groups were
taken into consideration [10]:
• 5 gradient-based features (absolute gradient mean,
variance, skewness, kurtosis, and percentage of non-zero
gradients),
• 20 run-length matrix-based features (short run
emphasis inverse moment, long run emphasis moment,
grey level nonuniformity, run length nonuniformity and
fraction of image in runs, separately for horizontal,
vertical, 45° and 135° directions),
• 220 co-occurrence matrix based features [11 features
calculated for matrices constructed for five distances
between image pixels(d=1, 2, 3, 4 and 5), and for the four
directions as in the case of RL features].
• 5 autoregressive model based features (parameters θ1,
θ2, θ3, θ4 and σ),
resulting in 250 features. The next step was feature
reduction. It was made based on Fisher coefficient (F)
value [4]. For each texture in the analysed image 20 non-
overlapping squares with size 20×20 were defined. For
each square, the whole feature set was calculated. Then,
for every feature the F coefficient was computed and
features with highest F were selected for further
processing. These features were fed to the input of a
three-layer feedforward artificial neural network (ANN),
shown in Fig. 3. This network was used to project the
input to a 2-dimensional space, called the nonlinear
discriminant analysis (NDA) space [3]. This feature
extraction technique provides that NDA features have
lower variance comparing to input features and its
separation is easier. This is very important for forming
oscillator weights based on these features, because the
weights reflect similarity of neighbouring image pixels.
The output network layer was for texture classification, to
compare ANN-based and oscillators network and
segmentation methods.

f1 f2

NDA2NDA1

Fig.3. ANN used for feature extraction and texture
classification; f1, f 2 are the input features
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Fig.4. Original image with two foam textures (a), image
(a) after segmentation using network of oscillators (b),

image (a) after segmentation using ANN (c)

4. Computer simulation
The LEGION network of size 330×169 was

simulated using oscillator model described by (1). The
sample image 8 bit grey level to be analysed is shown in
Fig. 4a. It is an optical image of two foams witch
different porosity used for construction of phantom
objects applied in NMR imaging [10]. For this image,
two texture features with the highest F coefficient were
selected: contrast (calculated based on horizontal co-
occurence matrix with distance equal to 1) and σ
(autoregressive model parameter). These two features
(without further feature extraction based on ANN
network) were used to form weights of LEGION
network according the following formula:
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values of f1 and f2 calculated for active oscillators in
neighbourhood of oscillator i, ε is a small number.

Equation (4) is a simplified version of weight setting
proposed in [1].

Instead of solving the set of nonlinear differential
equations (1) and (3) for each network oscillator, so
called singular solution method was applied [2]. It is
based on analysis of oscillation behaviour during its
periodic movement on trajectory shown in Fig. 1. This
provides much faster computation, compared to
traditional method based on solving differential
equations [2].  The segmentation algorithm based on
singular solution method was described in [6].
Segmentation results are shown in Fig. 4b. Segmentation
errors are visible on small white areas (where oscillator
network could not make a decision) and in two small
objects located in left side of second texture foam. For
comparison, the segmentation result of the same image
using two-layer ANN is presented in Fig. 4c. What is
interesting, the ANN [7] classifier was unable to
separate an artefact present in left lower part of right-
hand second foam texture.

Another 8-bit test image, with size 256×256 is shown
in Fig. 5a. It contains a mosaic of four textures from
Brodatz album.  For these textures, the features with the
highest F coefficient were θ2 and θ4. These features were
used as an input to ANN from Fig. 3. The network
generated two NDA features, used to formation of
oscillator network. In this case, the weights were
computed according to equation (5)
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where U is a constant and ε is a small constant to avoid
division by zero.

Equation (5) is an intuitively derived formula, which
provides small weight values when features representing
oscillators i and j are similar and large weight values
when they differ much from each other. This equation
provides smoother weight value distribution over similar
regions compared to (4). Fig. 5b shows segmentation
result. The largest problem was to separate texture 1 and
2. For comparison, Fig. 5c shows segmentation of the
same image using ANN. The network had the similar
problem with segmentation of textures. Additionally, a
spurious texture 3 region appeared between the areas of
correctly recognised textures 2 and 4.

5. Discussion
The presented method provides promising

segmentation results for sample natural texture images.
The computation time, applying the singular solution
method is in range of few seconds, using Celeron 400
based PC. The most important problem to solve is an
appropriate choice of texture features.  The future
investigations will comprise searching for more efficient
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Fig. 5. Mosaic of four Brodatz tetures (a), image from
(a) after segmentation using network of oscillators (b),

image from (a) after segmentation using ANN (c)

texture features different then used in this study (eg.
optimised linear filters). The advantage of presented
method is its possibility of parallel implementation in
hardware realisation.
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