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Abstract. Methods for digital-image texture analysis are reviewed based on
available literature and research work either carried out or supervised by the
authors. The review has been prepared on request of Dr Richard Lerski,
Chairman of the Management Committee of the COST B11 action
“Quantitation of Magnetic Resonance Image Texture”.

1. Introduction

Although there is no strict definition of the image texture, it is easily perceived by humans
and is believed to be a rich source of visual information – about the nature and three-
dimensional shape of physical objects. Generally speaking, textures are complex visual
patterns composed of entities, or subpatterns, that have characteristic brightness, colour,
slope, size, etc. Thus texture can be regarded as a similarity grouping in an image
(Rosenfeld 1982). The local subpattern properties give rise to the perceived lightness,
uniformity, density, roughness, regularity, linearity, frequency, phase, directionality,
coarseness, randomness, fineness, smoothness, granulation, etc., of the texture as a whole
(Levine 1985). For a large collection of examples of textures see (Brodatz 1966). There
are four major issues in texture analysis:

1) Feature extraction: to compute a characteristic of a digital image able to
numerically describe its texture properties;

2) Texture discrimination: to partition a textured image into regions, each
corresponding to a perceptually homogeneous texture (leads to image
segmentation);

3) Texture classification: to determine to which of a finite number of physically
defined classes (such as normal and abnormal tissue) a homogeneous texture
region belongs;

4) Shape from texture: to reconstruct 3D surface geometry from texture
information.

Feature extraction is the first stage of image texture analysis. Results obtained from this
stage are used for texture discrimination, texture classification or object shape
determination. This review is confined mainly to feature extraction and texture
discrimination techniques. Most common texture models will be shortly discussed as well.
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2. Texture analysis

Approaches to texture analysis are usually categorised into
� structural,
� statistical,
� model-based and
� transform

methods. Structural approaches (Haralick 1979, Levine 1985) represent texture by well-
defined primitives (microtexture) and a hierarchy of spatial arrangements (macrotexture) of
those primitives. To describe the texture, one must define the primitives and the
placement rules. The choice of a primitive (from a set of primitives) and the probability of
the chosen primitive to be placed at a particular location can be a function of location or
the primitives near the location. The advantage of the structural approach is that it
provides a good symbolic description of the image; however, this feature is more useful
for synthesis than analysis tasks. The abstract descriptions can be ill defined for natural
textures because of the variability of both micro- and macrostructure and no clear
distinction between them. A powerful tool for structural texture analysis is provided by
mathematical morphology (Serra 1982, Chen 1994). It may prove to be useful for bone
image analysis, e.g. for the detection of changes in bone microstructure.

In contrast to structural methods, statistical approaches do not attempt to understand
explicitly the hierarchical structure of the texture. Instead, they represent the texture
indirectly by the non-deterministic properties that govern the distributions and
relationships between the grey levels of an image. Methods based on second-order
statistics (i.e. statistics given by pairs of pixels) have been shown to achieve higher
discrimination rates than the power spectrum (transform-based) and structural methods
(Weszka 1976). Human texture discrimination in terms of texture statistical properties is
investigated in (Julesz 1975). Accordingly, the textures in grey-level images are
discriminated spontaneously only if they differ in second order moments. Equal second-
order moments, but different third-order moments require deliberate cognitive effort.
This may be an indication that also for automatic processing, statistics up to the second
order may be most important (Niemann 1981). The most popular second-order statistical
features for texture analysis are derived from the so-called co-occurrence matrix (Haralick
1979). They were demonstrated to feature a potential for effective texture discrimination
in biomedical-images (Lerski 1993, Strzelecki 1995). The approach based on
multidimensional co-occurrence matrices was recently shown to outperform wavelet
packets (a transform-based technique) when applied to texture classification (Valkealathi
1998).

Model based texture analysis (Cross 1983, Pentland 1984, Chellappa 1985, Derin 1987,
Manjunath 1991, Strzelecki 1997), using fractal and stochastic models, attempt to
interpret an image texture by use of, respectively, generative image model and stochastic
model. The parameters of the model are estimated and then used for image analysis. In
practice, the computational complexity arising in the estimation of stochastic model
parameters is the primary problem. The fractal model has been shown to be useful for
modelling some natural textures. It can be used also for texture analysis and
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discrimination (Pentland 1984, Chaudhuri 1995, Kaplan 1995, Cichy 1997); however, it
lacks orientation selectivity and is not suitable for describing local image structures.

Transform methods of texture analysis, such as Fourier (Rosenfeld 1980), Gabor
(Daugman 1985, Bovik 1990) and wavelet transforms (Mallat 1989, Laine 1993, Lu 1997)
represent an image in a space whose co-ordinate system has an interpretation that is
closely related to the characteristics of a texture (such as frequency or size). Methods
based on the Fourier transform perform poorly in practice, due to its lack of spatial
localisation. Gabor filters provide means for better spatial localisation; however, their
usefulness is limited in practice because there is usually no single filter resolution at which
one can localise a spatial structure in natural textures. Compared with the Gabor
transform, the wavelet transforms feature several advantages:
� varying the spatial resolution allows it to represent textures at the most suitable scale,
� there is a wide range of choices for the wavelet function, so one is able to choose

wavelets best suited for texture analysis in a specific application.
They make the wavelet transform attractive for texture segmentation. The problem with
wavelet transform is that it is not translation-invariant (Brady 1996, Li 1997).

3. Models of texture

Features (parameters) derived from AR model, Gaussian-Markov RMF model and the
Gibbs RMF (Derin 1987) are used for image segmentation.

3.1 AR models

The autoregressive (AR) model assumes a local interaction between image pixels in that
pixel intensity is a weighted sum of neighbouring pixel intensities. Assuming image f is a
zero-mean random field, an AR causal model can be defined as

∑
∈

+=
sNr

srrs eff θ   (3.1)

where fs is image intensity at site s, se  denotes an independent and identically distributed
(i.i.d.) noise, Ns is a neighbourhood of s, and θθθθ is a vector of model parameters. Causal
AR models have an advantage of simplicity and efficiency in parameter estimation over
other, non-causal spatial interaction models. Causal AR model parameters were used in
(Hu 1994) for unsupervised texture segmentation. An example of a local neighbourhood
for such a model, represented by 4 parameters, is shown in Fig. 3.1. Shaded area in Fig. 3
indicates region where valid causal half-plane AR model neighbourhood may be located.

Using the AR model for image segmentation consists in identifying the model parameters
for a given image region and then using the obtained parameter values for texture
discrimination. In the case of simple pixel neighbourhood shown in Fig. 3, that comprises
4 immediate pixel neighbours, there are 5 unknown model parameters – the standard
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deviation σ of the driving noise es and the model parameter vector θθθθ=[θ1,θ2,θ3,θ4]. By
minimising the sum of squared error

( )22 ˆ∑ ∑ −=
s s

sss fe wθθθθ (3.2)

the parameters can be estimated through the following equations:
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where ws = col[fi, i∈ Ns], and the square N×N image is assumed.
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Fig. 3.1 Local neighbourhood of image element fs

Recursively identified AR model parameters were used in (Sukissian 1994) for texture
segmentation by means of an ANN classifier. Sarkar et al. (Sarkar 1997) considered the
problem of selecting the AR model order for texture segmentation.

An extensive discussion of other stochastic models, including non-causal AR model,
moving average (MA) model and the autoregressive moving average (ARMA)
representation can be found in (Jain 1989).

3.2 Markov random fields

A Markov random field (MRF) is a probabilistic process in which all interactions is local;
the probability that a cell is in a given state is entirely determined by probabilities for
states of neighbouring cells (Blake 1987). Direct interaction occurs only between
immediate neighbours. However, global effects can still occur as a result of propagation.

The link between the image energy and probability is that

)/exp( TEp −∝ (3.1)
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where T is a constant. The lower the energy of a particular image (that was generated by a
particular MRF), the more likely it is to occur.

There is a potential advantage in hidden Markov models (HMM) over other texture
discrimination methods is that an HMM attempts to discern an underlying fundamental
structure of an image that may not be directly observable. Experiments of texture
discrimination using identified HMM parameters are described in (Povlow 1995), showing
better performance than the autocorrelation method which required much larger
neighbourhood, on both synthetic and real-world textures.

Another conventional approach segments statistical texture image by maximising the a
posteriori probability based on the Markov random field (MRF) and Gaussian random
field models (Geman 1984). Since a conditional probability density function (pdf) is not
accurately estimated by the MRF, equivalently the maximum a posteriori (MAP) estimator
uses the Gibbs random field. However, the Gibbs parameters are not known a priori,
thus they should be estimated first for texture segmentation (Hassner 1981).

An efficient GMRF parameter estimation method, based on the histogramming technique
of (Derin 1987) is elaborated in (Gurelli 1994). It does not require maximisation of a log-
likelihood function; instead, it involves simple histogramming, a look-up table operation
and a computation of a pseudo-inverse of a matrix with reasonable dimensions.

The least-square method for estimating the second-order MRF parameters is used in (Yin
1994) for unsupervised texture segmentation by means of a Kohonen artificial neural
network.

In (Yin 1994), MRF and Kohonen ANN were used for unsupervised texture
segmentation, while genetic algorithms have were applied in (Andrey 1998).

Using the MRF for colour texture segmentation was introduced in (Panjwani 1995). A
maximum pseudolikelihood scheme was elaborated for estimation model parameters
from texture regions. The final stage of the segmentation algorithm is a merging process
that maximises the conditional likelihood of an image. The problem of selecting
neighbours during the design of colour RMF is still to be investigated. Its importance is
justified by the fact that large number of parameters that can be used to define
interactions within and between colour bands may increase the complexity of the
approach. Colour texture MRF models are considered in (Bennett 1998).

The problem of texture discrimination using Markov random fields and small samples is
investigated in (Speis 1996). The analysis revealed that 20×20 samples contain enough
information to distinguish between textures and that the poor performance of MRF
reported before should be attributed to the fact that Markov fields do not provide
accurate models for textured images of many real surfaces.

Multiresolution approach to using GMRF for texture segmentation appears more
effective compared to single resolution analysis (Krishnamachari 1997). Parameters of
lower resolution are estimated from the fine resolution parameters. The coarsest
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resolution data are first segmented and the segmentation results are propagated upward to
the finer resolution.

3.3 Fractal models

There is an observation that the fractal dimension (FD) is relatively insensitive to an
image scaling (Pentland 1984) and shows strong correlation with human judgement of
surface roughness. It has been shown that some natural textures have a linear log power
spectrum, and that the processing in the human visual system (i.e. the Gabor-type
representation) is well suited to characterise such textures. In this sense, the fractal
dimension is an approximate spectral estimator, comparable to other alternative methods
(Chaudhuri 1995).

Fractal models describe objects that have high degree of irregularity. Statistical model for
fractals is fractional Brownian motion (C-C. Chen 1989, Peitgen 1992, Jennane 1994). The
2D fractional Brownian motion (fBm) model provides a useful tool to model textured
surfaces whose roughness is scale-invariant. The average power spectrum of an fBm
model follows a 1/f law; it is characterised by the self-similarity condition

Hstfstf 22 ||)]()(var[ σ=−+  (3.2)

where 0<H<1 is known as the Hurst parameter (a one-dimensional process is considered,
for simplicity). The self-similarity condition is stationary in the sense that the power law is
independent of the time parameter t. The major disadvantage of fBm is that the
appearance of its realisation is controlled by the single Hurst parameter H. Thus the
roughness of the realisations is invariant to scale. Another disadvantage is that the model
is isotropic. The extended self similarity (ESS) model was proposed in (Kaplan 1995) to
deal with these limitations, such that

)()]()(var[ 2 sgtfstf σ=−+ (3.3)

where g(1) = 1. The function g(s) is called the structure function, which determines the
appearance of the 2D random model of a texture. It is related to the image correlation
function. For the ESS model a generalised Hurst parameter is defined for isotropic
images. This parameter is scale-dependent; it is calculated by taking a logarithm of a ratio
of average local energy of image horizontal and vertical increments at available scales. The
parameters derived can be used for texture analysis, as shown in (Kaplan 1995). Further
research is needed to find the ESS model suitability to non-isotropic textures.

The fractal dimension D of a signal characterised by an fBm is equal to (Jennane 1994)

HED −+= 1 (3.4)

where E is the Euclidean dimension (E = 2 for a curve, E = 3 for a surface). A number
of methods for calculation of image fractal dimension is described in (S. Chen 1993,
Sarkar 1994).
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The fractal dimension of six images derived from the original texture and the concept of
multifractal model that implies a continuous spectrum of exponents were utilised in
(Chaudhuri 1995) for natural texture segmentation.

The ability of fractal features to segment mosaics of natural texture images was
investigated in (Duibuisson 1994). In was concluded that fractal dimensions will not
segment all types of texture.

There were attempts to segment the grey and white matters and lateral ventricles in
magnetic resonance (MR) images based on fractal models – as reported by (Lundhall
1986) and (Lachman 1992).

3.4 Other models

An interesting texture model is suggested in (Doh 1996) using the metric space concept, a
special form of the topology space. Each pixel is regarded as a set element and region
segmentation of texture images is modelled by the topology structure of each class.
Topology is a mathematically defined relationship among elements. Closure set is the
largest topology member of the set. The segmentation algorithm is based on the concept
of the metric space and closure. A number of theorems are proven in (Doh 1996) that
form the theoretical basis to the segmentation procedure. Computer simulation for
synthesised and real texture images shows that the proposed algorithm gives better
performance than the conventional Gauss-Markov random field (GRMF) and the spatial
grey level difference method (SGLDM) methods.

4. Feature extraction techniques

4.1 First-order histogram based features

Assume the image is a function f(x,y) of two space variables x and y, x=0,1,…,N-1 and
y=0,1,…,M-1. The function f(x,y) can take discrete values i = 0,1,…,G-1, where G is the
total number of number of intensity levels in the image. The intensity-level histogram is a
function showing (for each intensity level) the number of pixels in the whole image,
which have this intensity:
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The histogram of intensity levels is obviously a concise and simple summary of the
statistical information contained in the image. Calculation of the grey-level histogram
involves single pixels. Thus the histogram contains the first-order statistical information
about the image (or its fragment). Dividing the values h(i) by the total number of pixels in
the image one obtains the approximate probability density of occurrence of the intensity
levels

NMihip /)()( = , i = 0,1,…,G-1 (4.3)

The histogram can be easily computed, given the image. The shape of the histogram
provides many clues as to the character of the image. For example, a narrowly distributed
histogram indicated the low-contrast image. A bimodal histogram often suggests that the
image contained an object with a narrow intensity range against a background of differing
intensity. Different useful parameters (image features) can be worked out from the
histogram to quantitatively describe the first-order statistical properties of the image.
Most often the so-called central moments (Papoulis 1965) are derived from it to
characterise the texture (Levine 1985, Pratt 1991), as defined by Equations (4.4)-(4.7)
below.
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Two other parameters are also used, described in (4.8) and (4.9).
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The mean takes the average level of intensity of the image or texture being examined,
whereas the variance describes the variation of intensity around the mean. The skewness
is zero if the histogram is symmetrical about the mean, and is otherwise either positive or
negative depending whether it has been skewed above or below the mean. Thus µ3 is an
indication of symmetry. The kurtosis is a measure of flatness of the histogram; the
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component ‘3’ inserted in (4.7) normalises µ4 to zero for a Gaussian-shaped histogram.
The entropy is a measure of histogram uniformity. Other possible features derived from
the histogram are the minimum, the maximum, the range and the median value.

In the case of visual images, the mean and variance do not actually carry the information
about the texture. They rather represent the image acquisition process, such as the
average lighting conditions or the gain of a video amplifier. Using images normalised
against both the mean and variance can give better texture discrimination accuracy than
using the actual mean and the actual variance as texture parameters (Lam 1997). Thus
images are often normalised to have the same mean, e.g. µ = 0, and the same standard
deviation, e.g. σ = 1.

Information extracted from local image histograms is used in (Lowitz 1983) as features
for texture segmentation. In particular, the module and state of the histogram are
suggested for quantitative texture description. For the pixel (x,y) centred in a window
containing N pixels, the module is

∑
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It is argued in (Lowitz 1983) that the module (4.10) is a measure of information included
in the histogram. The state is the intensity level that corresponds to a maximum value of
intensity counts in the histogram.

4.2 Co-occurrence matrix based features

The major advantage of using the texture attributes (4.4)-(4.9) is obviously their simplicity.
However, they can not completely characterise texture. Julesz found through his famous
experiments on human visual perception of texture (Julesz 1975), that for a large class of
textures “no texture pair can be discriminated if they agree in their second-order
statistics”. Even if counterexamples have been found to this conjecture, the importance
of the second-order statistics is certain. Therefore the major statistical method used in
texture analysis is the one based on the definition of the joint probability distributions of
pairs of pixels.

The second-order histogram is defined as the co-occurrence matrix hdθ(i,j) (Haralick
1979). When divided by the total number of neighbouring pixels R(d,θ) in the image, this
matrix becomes the estimate of the joint probability, pdθ(i,j), of two pixels, a distance d
apart along a given direction θ having particular (co-occuring) values i and j. Two forms
of co-occurrence matrix exist – one symmetric where pairs separated by d and –d for a
given direction θ are counted, and other not symmetric where only pairs separated by
distance d are counted. Formally, given the image f(x,y) with a set of G discrete intensity
levels, the matrix hdθ(i,j) is defined such that its (i,j)th entry is equal to the number of times
that
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This yields a square matrix of dimension equal to the number of intensity levels in the
image, for each distance d and orientation θ. Due to the intensive nature of computations
involved, often only the distances d = 1 and 2 pixels with angles θ = 0°, 45°, 90° and 135°
are considered as suggested in (Haralick 1979). If pixel pairs in the image are highly
correlated, the entries in hdθ(i,j) will be clustered along the diagonal of the matrix. Co-
occurrence matrix calculation is illustrated in Fig. 1, for d = 1. The classification of fine
textures requires small values of d, whereas coarse textures require large values of d.
Reduction of the number of intensity levels (by quantizing the image to fewer levels of
intensity) helps increase the speed of computation, with some loss of textural
information.
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An expansion of the set of features derived from the co-occurrence matrix can be found
in (Lerski 1993, Pratt 1991).

A fast algorithm for the computation of co-occurrence matrix parameters was proposed
in (Alparone 1990, Argenti 1990). A generalised multidimensional co-occurrence matrices
are considered in (Kovalev 1996) that exploit the co-occurrence of not only grey levels at
some distance and directions, but also such features as e.g. magnitude of local Sobel
gradient. The authors called this approach “elementary structure balance method”.

An increase in the co-occurrence dimensionality, which improves the description of
spatial relationships, benefits both monochrome and colour texture segmentation
(Valkealathi 1998).

4.3 Multiscale features

For calculating multiscale features, various time-frequency methods are adopted (L.
Cohen 1989). The most commonly used are Wigner distributions, Gabor functions, and
wavelet transforms. However, Wigner distributions are found to possess interference
terms between different components of a signal. These interference terms lead to wrong
signal interpretation. Gabor filters are criticised for their non-orthogonality that results in
redundant features at different scales or channels (Teuner 1995). Still, Gabor filters are
used for texture segmentation (P. Cohen 1989, Jain 1991, Dunn 1994, Bigun 1994) and
the problem of designing Gabor filters for texture segmentation is considered in (Dunn
1995, Teuner 1995). On the other hand, the wavelet transform, being a linear operation,
does not produce interference terms. Unlike the Fourier transform, it possesses a
capability of time (space) localisation of signal spectral features. For these reasons, much
interest in applications of the wavelet transform to texture analysis can be noticed
recently. Dyadic wavelet transform is considered here.
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The wavelet decomposition of a signal f(x) is performed by a convolution of the signal
with a family of basis functions, )(,2 xtsψ :

dxxxfxxf tt ss ∫
∞

∞−
= )()()(),( ,2,2 ψψ (4.20)

where s, t are referred to as the translation and dilation parameters, respectively.

A piramidal algorithm (Mallat 1989) can perform wavelet decomposition in which a pair
of wavelet filters including a lowpass filters and a highpass filter is utilised to calculate
wavelet coefficients (4.20). The quadrature mirror filters (QMF) as depicted in Fig. 4.2
can be used to implement wavelet transform instead of explicitly using wavelet functions
(Strang 1996).

DECOMPOSITION RECONSTRUCTION
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Fig. 4.2 Illustration of wavelet-based signal decomposition and reconstruction
g, gr – lowpass filters; h,hr  – highpass filters;

(2↓ ) – downsampling (decimation by 2); (2↑ ) – upsampling.
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Fig. 4.3 Signal analysis using 2 levels of dyadic wavelet decomposition
L – approximation components, H – detail components

In the case of two-dimensional images, the wavelet decomposition is obtained with
separable filtering along the rows and along the columns of an image (Mallat 1989). Fig.
4.4 illustrates the level 1 (1-scale) and level 2 (2-scale) image decomposition.

The wavelet analysis can thus be interpreted as image decomposition in a set of
independent, spatially oriented frequency channels. The HH subimage represents diagonal
details (high frequencies in both directions – the corners), HL gives horizontal high
frequencies (vertical edges), LH gives vertical high frequencies (horizontal edges), and the
image LL corresponds to the lowest frequencies. At the subsequent scale of analysis, the
image LL undergoes the decomposition using the same g and h filters, having always the
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lowest frequency component located in the upper left corner of the image. Each stage of
the analysis produces next 4 subimages whose size is reduced twice compared to the
previous scale. Good texture segmentation results can be obtained within 2 to 4 scales of
wavelet decomposition. In the case of a 3-scale analysis, 10 frequency channels can be
identified as shown in Fig. 4.5. The size of the wavelet representation is the same as the
size of the original image. As there is a choice of particular wavelet function for image
analysis, symmetric wavelet functions appear superior to non-symmetric ones (Lu 1997)
which is attributed to the linear-phase property of symmetric filters.

LH

HL HH

LL

LLLH

LLHL LLHH
LH

HL HH

LLLL

Fig. 4.4  One-scale decomposition (left), two-scale decomposition (right)

1 2

3 4
5

6 7

8

9 10

HHLH

LL HL

Fig. 4.5 Ten channels of a threee-level wavelet decomposition of an image

In (Porter 1996) wavelet transform is used both to analyse the image prior to
segmentation enabling feature selection as well as to provide spatial frequency-based
descriptors for segmenting textures. The quality and accuracy of segmentation ultimately
depend on the type of features used. Images consisting of a number of textured regions
are best segmented using frequency-based features, whereas images made up of smoother
regions can more easily be segmented using local mean and variance of intensity levels.
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Different features are required in different regions of the image. Three-level wavelet
decomposition was used in (Porter 1996), resulting in 10 main wavelet channels. The
“energy” of each channel can be evaluated by simply calculating the mean magnitude of
its wavelet coefficients.
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where the channel is of dimensions M by N (usually M = N) and w is a wavelet coefficient
within a channel. It turns out that textured images have large energies in both low and
middle frequencies. The low-frequency channels are dominant over smooth regions.

 Fig. 4.6 Example energy levels for smooth and textured images

To decide what kind of features to use for image segmentation, the image is first split into
smooth and textured regions based on the value of the following factor
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The region is labelled as smooth if R ≥ T or textured if R < T, where T is the threshold.
Appropriate features are then selected for the regions, to perform the segmentation as
illustrated in Fig. 4.7.

Wavelet
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Feature
Selection

Clustering
Original
Image

Segmented
Image

Fig. 4.7 Block diagram of the segmentation algorithm (Porter 1996)

4.4 Other features

A Grey-Tone Difference Matrix (GTDM) was suggested in (Amadasun 1989) in an
attempt to define texture measures correlated with human perception of textures. A GTD
matrix is a column vector containing G elements. Its entries are computed based on
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measuring the difference between the intensity level of a pixel and the average intensity
computed over a square, sliding window centred at the pixel. Suppose the image intensity
level f(x,y) at location (x,y) is i, i=0,1,…,G-1. The average intensity over a window centred
at (x,y) is
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where K specifies the window size and W = (2K+1)2. The i-th entry of the gray-tone
difference matrix is
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for all pixels having the intensity level i. Otherwise, s(i) = 0.

Five different features were derived from the GTDM, to quantitatively describe such
perceptual texture properties as
� coarseness (defined by the size of texture primitives):
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where ε is a small number to prevent the coarseness coefficient becoming infinite and
pi is the estimated probability of the occurrence of the intensity level i

nNp ii /= (4.23)
with Ni denoting the number of pixels that have the level i, and n = (N-K)(M-K).

� contrast (dependent on the intensity difference between neighbouring pixels):
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� busyness (described by high spatial frequency of intensity changes):

∑ ∑

∑

−

=

−

=

−

=

−
= 1

0

1

0

1

0

||

)(

G

i

G

j
ji

G

i
i

bus
jpip

isp
C , 0,0 ≠≠ ji pp  (4.25)

� complexity (dependent on the number of different primitives and different average
intensities):
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� texture strength (clearly definable and visible primitives):
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The original paper (Amadasun 1989) contains more detailed explanation about the
reasoning that led to the particular definition of texture features given by Equations
(4.22)-(4.27).

Examples of commonly used features, not discussed above, are
� Fourier transform energy,
� local extrema count along a 1D scan direction (Mitchell 1977),
� run length matrix-derived features (Haralick 1979),
� directional intensity level energy (Hsiao 1989),
� filter masks in the space domain (multichannel filtering, Law features) including

Gabor filters (P. Cohen 1989, Jain 1991, Dunn 1994, Bigun 1994) and subsequent
nonlinear operators (Cohen 1990, Jain 1996),

� filter masks in the Fourier spectrum domain (Delibasis 1997),
� mathematical morphology-derived features (Chen 1994, Lam 1997),
� statistical geometrical features (Y. Chen 1995: 16 features that describe geometry of

binary images obtained from texture by multithresholding).

4.5 Feature selection

� (Fukunaga 1990): Choosing most effective features for class separability (different to
the criteria for image representation).

� (Lerski 1993): Strongly skewed features are rejected; strongly correlated features are
rejected. Discriminatory analysis is used to select the most discriminating features (an
analysis of variance F-test was applied).

� (Kovalev 1996): The most desirable line of approach is to pay a lot of attention in
choosing image features so that the classes are linearly separable. In other words,
careful feature selection followed by a simple classifier is much more preferable than a
quick feature selection stage followed by a carefully designed classifier.

5. Texture discrimination and segmentation

The reported segmentation methods are based on:
� region growing (Pratt 1991, Gonzalez 1992),
� estimation theory – maximum likelihood (Chellappa 1985),
� split-and-merge (Chen 1979, Pratt 1991, Gonzalez 1992),
� Bayesian classification (Hsiao 1989),
� probabilistic relaxation – iterative approach for using context information to reduce

local ambiguities (Hsiao 1989),
� clustering (Hu 1994),
� artificial neural networks (Jain 1991, Sukissian 1994, Yin 1994, Augusteijn 1995,

Strzelecki 1995, Jain 1996, Bruzzone 1998).
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The techniques for texture segmentation can be classified to be either supervised (Hsiao
1989a, Unser 1990, Reed 1990, Bovik 1990, Dunn 1994, Dunn 1995) or unsupervised
(Hsiao 1989b, Jain 1991, Mao 1992, Bigun 1994, Hu 1994, Yin 1994, Chaudhuri 1995, J.
Chen 1995, Panjwani 1995, Kervrann 1995, Teuner 1995, Andrey 1998) based on whether
the number of textures contained in the image is known in advance or not.

The most recent contributions are shortly characterised below, as they may put some light
on current trends in the field.

The k-means clustering technique was used in (Porter 1996), applied to wavelet derived
features. The technique involves grouping those pixels in the image whose feature vectors
represent points that are close together in the feature space. The final result is a number
of clusters K, where each hopefully depicts a perceptually different region in the image.

Feedforward ANNs were used in (Jain 1996) along with multichannel filtering for texture
segmentation. A backpropagation algorithm was applied for the classifier training.

Improvements to iterative morphological decomposition were proposed in (Lam 1997)
for rotation-invariant texture discrimination, based on features derived using
mathematical morphology. The method is compared to simultaneous autoregressive
(SAR) models and multichannel Gabor filters.

A comparison is presented in (Porter 1997) between the performance of three schemes of
feature extraction: the wavelet transform, a circularly symmetric Gabor filter and a GMRF
with a circular neighbour set to achieve rotation-invariant texture discrimination. In
conclusion, the wavelet-based approach was the most accurate, exhibited the best noise
performance and had the lowest computational complexity when implemented using the
db4 wavelet.

Experiments with natural textures were performed in (Valkealathi 1998) using reduced
multidimensional co-occurrence histograms. They proposed linear compression,
dimension optimisation and vector quantization for the reduction of histograms. As a
result, higher classification accuracy was obtained compared to the channel histograms
and wavelet packets.

The problem always encountered in textured image segmentation relates to the trade-off
between the sample size and accuracy. The bigger the sample size, the better the accuracy
of feature estimation; however, this allows a coarse segmentation only. Image
segmentation at small sample size is tackled in (Speis 1996) where RMF was used as image
model. Boundary effect (a pixel at texture boundary has neighbouring pixels belonging to
different textures) is investigated in (Yhann 1995) where multiresolution method was
combined with detecting local intensity discontinuities at the boundary.
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6. MRI Texture Classification

A limited number of recently published contributions is quoted here, as a result of the
early stage of this literature survey. [(?) denotes a situation in which original papers were not
accessible to the authors at the time of completing the manuscript of this survey.]

� (Lundhall 1986): Segmentation of grey and white matter and lateral ventricles using a
fractal model (?).

� (Lachmann 1992): Fractal model (?).
� (Bello 1994): Combination of wavelet analysis and multiresolution MRF. First, discrete

wave-packet transform is used to focus on selected image “channel” data. Second, an
MRF segmentation is used to “fuse” data associated with the selected image channels
at a specific resolution levels. Applied to brain image segmentation to distinguish
“empty space”, “white matter”, “grey matter”, “internal brain cavities” and
“neck/muscle/skin”. Qualitative characteristics of the derived segmentation described
as “good”.

� (Delibasis 1997): Genetic algorithm-designed filter masks correlated with image
Fourier spectrum. Segmentation of cerebellum from MR images.

� (Bruzzone 1998): Magnetic resonance images supervised classification using so-called
structural neural networks shows more accuracy than a k-NN classifier. Images were
first segmented using a region-growing algorithm. Each region was represented by a
feature vector (features related to intensity, position and size-and-shape) to excite the
SNN. Twelve classes were associated with different organs (e.g. the nose, the left eye,
the brain, etc.).

7. Work carried out at the Institute of Electronics, TUL

A number of different methods concerning texture analysis and synthesis has been
developed in the Institute of Electronics since 1990. For purposes of texture analysis and
segmentation statistical methods using co-occurrence matrix, micro-feature extraction and
Markov random field models were implemented. Among these methods, the multilayer
perceptron (MLP) network and the cellular neural network (CNN) were utilised. Texture
synthesis methods were based on the CNN approach.

7.1 Co-occurrence matrix method

This statistical approach, which is based on co-occurrence matrices (Haralick 1979)
describes second-order statistics of texture. An algorithm for co-occurrence matrix
construction and statistical feature extraction from the matrix may be defined as follows:
a) Division of analysed image into connected and disjoint regions. An image is

considered as a set of points distributed on two-dimensional and finite space.
Intensities of image points are integer values from range [0,...,G-1] where G is the
number of intensity levels.

b) Construction of co-occurrence matrix H for each region and some vectors v, where
H[i,j] is a matrix of estimated probabilities of transitions from level i to level j for
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given vector v where i,j = 0,1,...,G-1, and vector v defines direction of construction of
H  and distance between points that have intensities i and j.

c) Computation of R statistical features considered as representative for a given class of
texture, derived from matrix H.

d) Classification of textures using a classifier with R inputs and K outputs, where K is
number of classes.

As a classifier, the multilayer perceptron (MLP) artificial neural network was used for
textured image segmentation in (Strzelecki 1995). The single-hidden layer architecture of
the MLP is illustrated in Fig. 7.1. The texture features are fed to the network inputs. The
layer of hidden processing elements links the network input and output. The number of
output neurons is set according to the number of texture classes. The index of an output
neuron that shows a maximum activation level indicates the texture class that corresponds
to actual ANN input. Thanks to the non-linear activation function fs of the network
elements, the MLP can form arbitrary complex decision boundaries in the classified
feature space.

MLP is trained with the supervised learning algorithm known as the backpropagation of
the gradient of the error, i.e. the difference (defined usually by the minimum mean square
value criterion) between the actual and desired network output (Hecht-Nielsen 1990).
Computational cost of the training stage heavily depends on the number of neurons in
the network. Also, more importantly, the number of neurons determines network
classification capabilities.

Fig. 7.1 MLP artificial neural network (fs denotes the nonlinear activation function)

The choice of the number and the type of statistical features computed using the co-
occurrence matrixes was made based on multidimensional variance analysis, which
provides optimal set of features for given segmentation task.
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Examples of texture segmentation using the co-occurrence matrix method are presented
in Fig. 7.2a and 7.2b. They represent cross-section of human skin tissue: epidermis –
region marked with ‘1’, dermis (‘2’) and the mast cells (‘3’). The problem was to find the
area occupied by the mast cells that is important in diagnosis of some kinds of skin
cancers (for example urticaria pigmentosa). Both pictures are represented as arrays of
512×512 pixels with 128 intensity levels.

 (a) (b)

Fig. 7.2 Skin tissues after segmentation

The image shown in Fig. 7.3 presents mast cells and their position with respect to
dermoepidermal junction. The CM method was used to find this junction. The measured
distance of mast cells to this junction is one of important characteristics of mast cells
morphology.

The aim of this study was to elaborate a texture analysis method that would allow
describing morphology and localisation of mast cells in the skin. This research was
performed with collaboration of Department of Dermatology, Medical University of
Lodz.

Fig. 7.3 Mast cells (white) and the dermoepidermal junction (staircase line)
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7.2 Texture segmentation based on micro-feature extraction

In this approach the texture is assumed to contain random/periodic transitions of image
brightness, called micro-features (Pelczynski 1994), e.g. edges, line segments or set of points
which have specific spatial intensity distribution. These local features can be extracted by
performing two-dimensional convolution of an image with a particular filter mask that
represents a model of the micro-feature pattern. Then, if required, a further nonlinear
transformation of the image obtained after the convolution may be performed. Examples
of 3 3×  masks used for local feature detection are illustrated in Fig. 7.4.
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a) b) c)
Fig. 7.4 Examples of micro-feature detection masks: a) point detector, b) vertical edge

detector, c) vertical line-like structure detector

As in the co-occurrence matrix method, the calculated feature values are fed to MLP
network, which is used as a classifier. An example of segmentation of sample biomedical
image is presented in Fig. 7.5.

1

2

3

1

a)                                                                     b)

Fig. 7.5 Segmentation of sample microscopic image representing biological tissues:
a) source image with three texture classes, b) image after segmentation.

In the next approach, a cellular neural network (CNN) was used both for texture feature
extraction and texture segmentation. CNNs is an array of nonlinear filters with local
feedback connections that enhance their filtering capabilities. A single CNN table is a
two-dimensional array composed of identical computational elements, or cells (Figs. 7.6
and 7.7). Each element has input and is locally connected with other cells in the network.
Weights between all inputs and the element, from its neighbourhood, form the so-called
weight template. The weight template is identical for every element in a network. Fig. 7.8
illustrates the proposed network structure for texture classification.
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Fig. 7.6 An array of cellular neural network cells of neighbourhood 1

Fig. 7.7 Block diagram of a single CNN cell

Fig. 7.8 Cellular neural network architecture for texture segmentation

First layer of the network consists of CNN tables, each associated with one class of
recognisable texture. Each of these CNN tables detects local features of only one texture
and remains insensitive to others. Second network layer performs linear averaging of the
first layer outputs, providing statistical measure of detected local texture features.
Intensities of considered feature maps serve as inputs to the classification layer. In the
experiments, a very simple classification rule was implemented which assumed that the
highest output of feature map indicates proper texture class. Two-dimensional array of
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such classifiers can form the third network layer. This structure performs fully parallel
texture segmentation process. In case of hardware network realisation it provides real-
time image segmentation. For template elements setting, genetic algorithm was used
(Pelczynski 1997).

The proposed CNN model for texture segmentation was tested on images derived from
the Brodatz album. An example of segmentation results is shown in Fig. 7.9.

(a)           (b)
Fig. 7.9 Example of texture classification using CNN

a) original image, b) image after segmentation

7.3 Markov random field model

In this method, an alternative approach to texture representation is presented. The texture
is assumed as a realisation of a Markov random field. MRFs have proved to be good
models for some classes of textures. Parameters of MRF uniquely describe a modelled
texture and can be derived directly from the analysed image, provided MRF is an adequate
model (Geman 1984, Derin 1987).

Assume F[x,y] is an image array of size N×M and f[x,y] denotes the integer intensity level
value in the range of [0, G-1] at location (x,y). F[x,y] is an MRF realisation if:
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where p(⋅) denotes conditional probability of  f[x,y] for a given field realisation F[x,y] and
Q denotes a neighbour set. As an example, the conditional probability for pixel f[x,y] in
the case of a second-order four-intensity-level MRF is given by
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where k is the intensity level, a=[a0, a1,…,a3] is color parameter vector, b=[b1, b2, b3, b4] is
spatial-dependency parameter vector, Q is a neighborhood of pixel f[i,j], V is the potential
function (Derin 1987), that depends on pixel intensity f and vectors a and b.
Assuming that the analysed texture can be described by the MRF model, there is a need
for estimating the field parameters, i.e. the vectors a and b. For this purpose, the
likelihood maximisation method (Cross 1983), histogramming method or modified
histogramming method can be used (Derin 1987). Likelihood maximisation method
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provides high estimation accuracy but requires long computation time. The
histogramming method is fast but less accurate, especially when used for estimation of
spatial-dependency vector parameter b. The modified histogramming method is a
combination of likelihood maximisation and histogramming, where estimation of MRF
parameters is performed independently for vectors a and b (Strzelecki 1997).

As an example of texture modelling using MRFs let us consider an image shown in Fig.
7.10a that represents cross-section of striated muscle tissue. This four-intensity-level
image of size 128×128 pixels was assumed as being a third-order MRFs realisation. For
comparison, two estimation methods were used to obtain MRF parameter set: maximum
likelihood and modified histogramming method. Next, using the obtained two sets of
MRF parameters for image from Fig. 7.10a, two textures were synthesised assuming the
same MRF order. They were generated using the so-called Gibbs sampler (Geman 1984).
These synthetic textures are presented in Fig. 7.10b and 7.10c, respectively. As can be
observed, they are very similar to the real tissue picture, which proves usefulness of the
MRF to modelling the particular biomedical texture considered. The ability of modified
histogramming method for providing accurate MRF parameter estimation is also
demonstrated.

   
(a) (b) (c)

Fig. 7.10 Cross-section of striated muscle tissue (a). Textures synthesised on the basis of
parameters estimated for the image of Fig. 7.10a using maximum likelihood method (b)

and modified histogramming method (c)

7.4 Design of cellular neural networks for texture generation

The objective of this research is to work out the texture generation method using the
cellular neural network (CNN) concept (Debiec 1998). The possibility of VLSI realisation
of CNN provides a powerful and efficient tool for texture synthesis that is very important
in computer graphics as well as in telecommunication data compression systems. The
reason for including this work in the present review on texture analysis methods is the
expectation that the template identified for a given texture can be used as a feature matrix
for texture discrimination as well, which will be the subject of further research.

CNN requires proper template design, whose element values are responsible for adequate
network functioning. To design a network template required for texture synthesis, two
methods are used. One of them uses a genetic algorithm. The search for optimal template
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requires modification of network template population, which elements were randomly
generated. The template is designed based on minimisation of chosen fitness function.
The generation procedure starts from white noise image with small variance. This initial
image is processed by the CNN for each template from its population. Next, for the
texture image obtained at the network outputs, the values of statistical features are
calculated and compared with values required. The ‘best fitted’ templates are chosen as
parent templates for the next populations, which are created using reproduction,
crossover and mutation. These operations work on binary strings used for coding of
template element values. The learning procedure is stopped when the fitness function
value reaches a given value.

Table 1. Examples of CNN-generated textures for different number of
statistical features used for their description

Texture 1

         2.41  -2.25   -1.03
A =  -0.20   3.12    3.17
        -0.96   2.83     0.18
Feature value:
required        obtained
VAR = 0.85 VAR = 0.85

Texture 2:

            0.39   -0.08   0.33
 A =    -1.13   -0.19   1.47
            0.54    1.73   -2.63
Feature values:
required       obtained
VAR = 0.50 VAR = 0.55
EX    = 0.00 EX   =  0.00

Texture 3:

        0.22   -2.07   0.81
A =  2.94   0.20   -2.75  
       -2.30   -0.18   0.18
Feature values:
required        obtained
VARx = 0.20 VARx = 0.33
VARy = 0.40 VARy = 0.38
EX    =  -0.42 EX   =  -0.30

(A – template matrix, VAR – variance, EX – expected value, VARx, VARy – variances of
marginal distributions)

Experimental results are presented in Table 1. Texture representation using one feature
only (for example variance) provides good results in terms of CNN template obtained.
The texture generated using this template has the variance value the same, as it was
required. Unfortunately, the increase of texture features causes less accurate results,
increasing computational time significantly.

The obtained textures are very simple and they look binary. For grey-level texture
generation, the alternative method was used. In this method, the CNN used for texture
generation emulates an autoregressive FIR filter. To provide network stability, the initial
image (white noise) and generated texture image are transformed such that they possess
negative amplitude spectrum and phase spectrum equal to zero. The objective of template
design process is to obtain a stable CNN that generates a texture with the same amplitude
spectrum as an original image (in terms of mean-square error).
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Using this method, the CNN were designed for generation of some Brodatz textures
(t09_gras, t04_cork, t93_furc, and t104_bur). The results are presented in Fig. 7.11 and
7.12. It can be stated that the proposed method provides good results for the stochastic
textures. For deterministic textures, such as t104_bur, phase spectrum equal to zero
causes substantial reconstruction errors. Thus the problem under investigation is to find
methods appropriate for phase spectrum modelling.

(a) (b)

        0.002   0.008  0.005  -0.026  -0.003
        0.025  -0.077  0.084   0.037   0.029
A = -0.044   0.283  0.324   0.283  -0.044
        0.029   0.037  0.084  -0.077   0.025
       -0.003  -0.026  0.005   0.008   0.002

(c)

Fig. 7.11 Original texture t93_furc (a)
synthesised texture (b) the corresponding CNN template A (c)

t09_gras

    
t04_cork

    
t104_bur

    
  (a) (b) (c)

Fig. 7.12 Original textures (a), texture fragments with zero phase spectrum (b),
synthesised textures using the CNN (c)
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7.4 Radiographic texture analysis

Image analysis techniques for detection of changes in bone mineral density (BMD) are
examined in (Cichy 1997). The results are compared with BMD measured using dual-
energy X-ray absorptiometry (DXA) method. X-ray patterns were registered in the same
conditions of exposure and chemical development. Additionally, a calibration phantom
was used to standardise the results. Radiogram patterns were digitised with a CCD
camera. The following texture parameters were computed: the mean of intensity, standard
deviation of intensity, skewness, kurtosis, energy, entropy and fractal dimension. The
mean value, standard deviation and coefficient of linear correlation with BMD were
estimated for every parameter. Occurrence probability of intensity level is highly
correlated with DXA-measured results. It seems that analysis of fractal dimension can
additionally enrich diagnostic knowledge about bone microarchitecture. Examples of
bone tissue X-ray images are presented in Fig. 13.

(a) (b) (c)
Fig. 7.13 Sample X-ray images of bone tissue for different BMD coefficients

(a) - BMD=0.56, (b) - BMD=0.31, (c) - BMD=0.14.

8. Summary

The above review of texture analysis methods is by no means exhaustive. Further library
search and numerical investigation are needed to make the material collected more
complete. Investigation of actual MR image properties would make the search for
adequate texture analysis methods better focused.
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