A. Materka, M. Strzelecki, R. Lerski, L. Schad: Evaluation of Texture Features of Test Objects for Magnetic Resonance Imaging,
June 1999, Infotech Oulu Workshop on Texture Analysis in Machine Vision, Oulu, Finland, 13-19.

FEATURE EVALUATION OF TEXTURE TEST OBJECTS
FOR MAGNETIC RESONANCE IMAGING

Andrzej Materka, Michat Strzelecki
Institute of Electronics, Technical University of £.6dz
Stefanowskiego 18, 90-924 £.6dz, Poland.
[materka][mstrzel]@ck-sg.p.lodz.pl
Richard Lerski
Medical Physics Department, Ninewells Hospital and Medical School
Dundee DD1 9SY, United Kingdom
r.a.lerski@dundee.ac.uk
Lothar Schad
Deutsches Krebsforschungszentrum Abt. Radiologie
Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
l.schad@dkfz-heidelberg.de

Abstract. Texture analysis of test object (phantom) images for standardization of in vivo
magnetic resonance imaging is considered in this paper. The test objects are made of
reticulated foam embedded in agarose gel. Different porosity foam materials are used to
manufacture the phantoms. Both optical and MR images are analyzed, split into classes
differing by the foam pore size. To characterize the image texture, a number of its first- and
second-order statistical features is computed. The usefulness of the features to object class
discrimination is evaluated using the ratio F of between-classes variance to within-classes
variance, and multidimensional analysis of variance. The effect of noise and MR slice
thickness on F is investigated.

1. Introduction

Studies have been carried out (Lerski 1993) to investigate whether texture measurements are
transportable between magnetic resonance centers and to make firm conclusions as to the
machine settings and sequence selection required. Development of quantitative methods of
texture analysis of magnetic resonance images is now the subject of COST B11 European
Community project scheduled for the years 1998-2002 (Internet 1999). The aim of this project
is to develop methods, which would allow reliable discrimination of different kinds of tissue
in MR images, independent of scanner type and place of its installation. There is an
expectation that the texture analysis technique will contribute to more objective and
repeatable medical diagnosis.

2. Test object images

The use of texture analysis in magnetic resonance imaging requires the availability of texture
test objects (phantoms) for use in standardization of in vivo measurements. Four physical
phantoms were manufactured in Medical Physics Department, University of Dundee,
Scotland. They are in the form of glass tubes filled with different-porosity reticulated foam.
The foam is stuffed with agarose gel that possesses a relatively long value of magnetic
resonance T2 response (Lerski 1998). The tubes were sealed properly to prevent the water
included in the gel from evaporation. A series of magnetic resonance images of the phantoms
were recorded using a Siemens Magnetom 1.5-Tesla scanner at the German Research Cancer
Center, Heidelberg, Germany. The images represent cross-sections of the foam-filled tubes,
taken at different field of view (100 mmx100 mm and 200 mmx200 mm), constant number of




image pixels (256x%256), different values of slice thickness (2 mm and 4 mm) — all acquired at
5 different positions along the tube axis. As a result, 4 different texture classes were obtained
with five samples in each class, in this initial study. Example of the MR textured images is
presented in Figure 1. Phantom images are analyzed in the current stage of investigation,
before in vivo experiments on tissue texture analysis — planned for the future — are carried on.

Figure 1 MR phantom images: al — foam, large pore size; a2 — glass bead; a3 — foam, medium
pore size; a4 — foam, small pore size; b — background noise.
Slice thickness: upper row — 4 mm, lower row — 2 mm.

Independently, optical images of the reticulated foam materials were digitally recorded, for
comparison with MR images. They contain scans of cross-section of two different-porosity
foams. Obtained 8-bit images of size 175x175 pixels are shown in Figure 2. From each
optical image, 42 non-overlapping samples of size 23x23 pixels were taken, resulting in 2
texture classes, each of 42 samples.

Foam] Foam?2
Figure 2 Optical images of reticulated foam materials:
Foaml — large pore size, Foam2 — medium pore size.

3. Results and discussion

A number of subroutines in Matlab and a specialized MS Windows application program
MaZda (Internet 1999) were written to compute a variety of texture features (parameters),
including first-order (histogram-based), second-order (computed from co-occurrence and run-
length matrices) (Haralick 1979), gradient, and autoregressive (AR) model-based features
(Hu 1994). The programs were applied to the recorded MR and optical images to compute
texture features and thus characterize texture properties. In the case of MR images, the effect
of noise was taken into account by adding Gaussian noise of specified standard deviation to
image samples and then computing the features. To investigate any feature ability to
discriminate between different pore-size textures, the following F coefficient was used:
D

F=y ()



that represents the ratio of between-classes feature variance D to within-classes feature
variance V (Shiirmann 1996).

For each sample (region of interest — ROI) of an optical image, the following 254 features

were calculated:

o H: 9 histogram-based (mean, variance, skewness, kurtosis and five histogram percentiles
for 1%, 10%, 50%, 90%, and 99%: #1 —#9),

o GR: 5 gradient-based features (absolute gradient mean, variance, skewness, kurtosis, and
percentage of non-zero gradients: #10 — #14),

o RL: 20 run-length matrix-based features (short run emphasis inverse moment, long run
emphasis moment, gray level nonuniformity, run length nonuniformity and fraction of
image in runs, separately for horizontal, vertical, 45° and 135° directions: #15 — #34),

o CO: 220 co-occurrence matrix based features (11 features defined in (Haralick 1973)
calculated for matrices constructed for five distances between image pixels (d=1, 2, 3, 4
and 5), and for the four directions as in the case of RL features: #35 — #254.

Except for the histogram-based features, each ROI image was quantized to 64 gray levels

(6-bit word-length) prior to computation of the texture parameters.
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Figure 3 F coefficient for H, GR, RL and CO features (no ROI normalization).

For each of the above-mentioned features, F coefficient was computed to express the
possibility to separate the two foam classes based on a given feature. As presented in Figure
3, for raw images, i.e. with no image normalization within ROIs, only 4 features from the
whole set (#37, #48, #59, and #70) represent relatively high value of F coefficient (e.g. F =
6.0). They are correlation coefficients calculated for the co-occurrence matrix determined at d
= 1, for the four main directions. Other features possess lower F values, which means that

they are not very useful to make distinction between the two classes of the foam texture, cf.
Table 1.
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Figure 4 F coefficient for H, GR, RL and CO features (‘+3 sigma’ ROI normalization).

To investigate whether image normalization has an influence on feature ability to allow
discrimination between the image classes, two normalization schemes were considered. For
both schemes, the image histogram was first computed within each ROI. Then, the image
mean M and standard deviation 0 were found. For the ‘+3 sigma’ scheme, the image intensity



levels were limited to the range from a minimum of f.,;,=p-30 to a maximum of f.x=H+30.
The intensity range (fnax—Tfmin) Was then quantized using 6-bit word-length prior to
computation of GR, RL and CO parameters. On the other hand, for the ‘1% — 99%’ scheme,
the values of f;, and f,.x were determined as corresponding to, respectively, 1% and 99% of
cumulative image histogram within ROL
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Figure 5 F coefficient for H, GR, RL and CO features (‘1%-99% ROI normalization).

The F coefficient distribution among the different texture features, obtained for the
‘+3 sigma’ and ‘1%-99%’ normalization schemes 1is illustrated in Figures 4 and 5,
respectively. Indeed, for ‘+3 sigma’ scheme, the number of features that have high F (F = 6.0)
increased significantly to 12. An intermediate number of 9 such features was obtained for
‘1%-99%’ scheme. Numerical results of this experiment are presented in Table 1.

Table 1
F coefficient for different normalization schemes (shaded areas: F>6).
Feature F, no F F
No. Feature definition number | normalization | ‘+3 sigma’ | ‘1%-99%’
1 [(1,0) Contrast 36 0.2 9.0 2.4
2 [(1,0) Correlation 37 8.7 8.6 8.8
3 |(1,0) Inverse Differential Moment 39 35 8.7 55
4 |(1,0) Sum Variance 41 4.1 7.1 7.0
5 |(1,0) Differential Entropy 45 0.0 8.0 3.6
6 |(0,1) Contrast 47 0.1 10.4 2.9
7 1(0,1) Correlation 48 10.6 10.7 10.9
8 [(0,1) Sum Variance 52 4.4 9.6 75
9 [(0,1) Differential Entropy 56 0.1 9.0 3.4
10 | (1,1) Correlation 59 6.1 6.2 6.1
11 | (1,1) Sum Variance 63 4.0 5.6 6.3
12 | (1,-1) Contrast 69 0.8 6.7 0.8
13 | (1,-1) Correlation 70 6.6 6.6 6.7
14 | (1,-1) Sum Variance 74 4.1 5.3 6.3
15 | (0,2) Sum Variance 96 4.2 4.7 7.3

It is evident that the number of useful features depends significantly on image normalization.
To explain this effect, one should refer to image properties as seen in Figure 2. Namely, the
images investigated, especially ‘Foam2’, show some nonuniformity of their local mean and
variance. It can be found that relative standard deviation 0, of image mean |, computed over
48 ROIs, is equal to 0y/pu=12.2% for ‘Foaml’ and as much as 0,/u=24.2% for ‘Foam?2’.
Similarly, the corresponding ratios related to image variance are equal to 15.8% for ‘Foam1’
and 29.1% for ‘Foam2’. At the same time, F coefficient for image mean [ is equal to 1.6 and
that for image variance 0° equals to 3.4. One can then expect that if there exist texture
features, which possess high correlation to p and 67, and image is not normalized, then such
features will demonstrate non-zero values of F even if they do not carry any information



about texture properties other than [ and o°. Such features will be redundant in a given
application. Moreover, high correlation to 1 and 6> may mask a feature ability to discriminate
the texture classes.

To find out whether there are indeed features highly correlated to [ and o° (within the feature
set under consideration) two numerical experiments were carried out — one with modified
image mean, and the other with a modified variance. For each texture feature, the ratio of its
value after mean (variance) modification to the value before modification was calculated, as
presented in Figure 6.
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Figure 6 The effect of image mean (a) and variance (b) on texture features.

The increase in image mean corresponding to Figure 6a is equal to 0.39 of its non-modified
value. Similar increase (0.37) is observed for the CO Sum Average features, regardless of the
distance d and direction used for CO matrix computation. These features are represented by
20 respective bars in Figure 6a, numbered as 40, 51, ..., 249. The GR (#10-#14) and RL (#15-
#34) features did not depend on |, as can be expected. The histogram percentile features (#5 -
#9) were set to zero to neglect the effect of slight intensity clipping due to the modifications.

Figure 6b indicates that many more features depend on 0” (#2) compared to [ The increase in
o” shown in this Figure equals to 0.44. The same increase is observed for gradient variance
(#11). The gradient mean is increased by a factor of 0.2 (#10). As far as RL features are
concerned, the increase of 0.14 is measured for the so-called Run Length Nonuniformity
(Haralick 1973), regardless of the direction (#16, #21, #26, and #31). Most of the CO-derived
features demonstrate dependence on o°. The same increase of 0.44 is obtained for CO
Contrast (#36), CO Sum of Squares (#38), CO Sum Variance (#41) and CO Difference
Variance (#44). The CO Angular Second Moment (#35) increased by 0.27, and the CO
Inverse Difference Moment (#39) changed by a factor of 0.12. Only CO Correlation (#37) is
independent of image variance. The CO features numbered from #35 to #45 correspond to all
pairs of image points that are a vector (1,0) apart from each other. The whole pattern of CO
feature dependence on 0> repeats in Figure 6b with a period of 11, until the features obtained
for the displacement vector (5,-5) that are numbered from #244 to #254.

More detailed analysis shows that standard deviation of the mean of ‘Foam1’ equals to 7.8,
0.2, and 4.5, respectively for ‘no normalization’, ‘+3 sigma’, and ‘1%-99%’ schemes. The
corresponding figures for ‘Foam2’ are equal to 11.3, 0.2, and 3.5. Thus ‘+3 sigma’ scheme
provides the best stabilization of the image mean value within the (fpax—Tfmin) window. This
results in the highest number of the discriminative features (Figure 4), thanks to elimination

of the effect of their correlation to mean and variance [U=0 and 0 is constant relative the



(fmax—Tmin) intensity range for the ‘£3 sigma’ normalization scheme]. Table 1 indicates that CO
Correlation does not indeed depend on image normalization.

To extend the set of texture features beyond those discussed so far, a small-neighborhood AR
model parameters 6, &, 6;, 6, and 0, were used (Hu 1994)

fo= 36, f +eg ()
rONg

where f is image intensity at site S, €5 denotes an i.i.d. driving noise of standard deviation Oy,

@, i=1,...,4 represent selected pixel-to-pixel relationship, 0y, is the noise standard deviation
and N; is a neighborhood of s. The image sample mean and variance were both normalized to,
respectively, 0 and 1 in the case of AR model identification. The F values obtained for AR
parameters are presented in Figure 7b. In this case, three AR parameters have relatively high
F values: 6, 6, and O,. They can be used for foam textures discrimination. This is
diagrammed in Figure 7c. As can be observed, the O, feature alone is sufficient to
discriminate the two optical textures.
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Figure 7 AR model neighborhood (a), F coefficient for AR model parameters (b),
scatter-plot of two AR model features (c) — optical foam images.

In this preliminary study, the number of MR image samples for each of the 5 texture classes
illustrated in Figure 1 is limited to 5 only (25 images for each slice thickness were available,
total of 50 images in the whole experiment). This eliminates the possibility of training e.g. a
neural-network classifier, without its overtraining. Such attempts have then been postponed
for future study, when more MR image samples are collected. Nevertheless, with the material
at hand, it was still possible to draw some consistent conclusions with regard to the effects of
slice thickness and noise on the class separability measure. The above-defined 5-parameter
AR model was used to characterize the measured MR images of the test objects.

Figure 8 shows the F coefficient as a function of noise standard deviation (added to the
images shown in Figure 1) — calculated for all five AR model parameters of MR images. As
can be observed, discrimination ability decreases with increasing noise standard deviation.
Also, the discrimination measure is higher in the case of 2-mm slice images, because for
thinner slice, pores located in deeper layers distort the original (cross-sectional) texture
structure to a lower extent. The effect of this distortion is especially visible in Figure 1, where
images from upper and lower image rows can compare to each other.

It follows from the numerical experiments that it is possible to classify the 5 MR texture
classes with no error, based on the small-neighborhood AR model parameters. However, one
should remember that the sample size is very small in this study and further justification of
the possibility is necessary, based on more extensive experimental material. The
discrimination measure, as illustrated in Figure 8, seems to show monotonous deterioration
with both slice thickness and noise. Both of these parameters of the magnetic resonance



imaging process have the effect on the time of MR image measurement, and thus its cost and
independence of patient body movement. It is expected that some guidelines can be
formulated in future as to the time required to ensure image quality that would guarantee
texture classification with a prescribed permissible error.
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Figure 8 F coefficient as a function of additive noise standard deviation
for AR model parameters (MR images).

4. Conclusions

An attempt has been made to evaluate the effectiveness of statistical parameters as texture

features to discriminate between different test objects for magnetic resonance imaging.

Surprisingly, only a few among more than 200 popular features are useful to distinguish the

otherwise quite distinct (at least for humans) textures. This indicates the need for carrying on

research work on better understanding of texture properties and for finding new feature

definitions that would provide means for firm discrimination of different images of biological

origin. The significance of image normalization prior to texture parameter computation has

been demonstrated. This early study shows usefulness of AR model parameters for both MR

and optical texture discrimination. For the future, the following investigations are planned:

o consideration of new texture features (e.g. wavelet and mathematical morphology based
features),

o comprehensive analysis of noise influence on classification accuracy and selection of
features that would be weakly dependent on noise,

a further development of MaZda software used for feature calculation,

o development of feature selection methods for MR texture test objects,

o extending the results to texture classification of biological tissue.

Acknowledgment: This work was performed within the framework of COST B11 European
project. It was supported in part by British-Polish Joint Research Programme.

References

R. Haralick, K. Shanmugam and I. Dinstein, “Textural Features for Image Classification”,
IEEE Trans. Systems Man Cybernetics, 3, 6 (1973) 610-621.

Internet 1999, http://phase pkiuibno/~costb114

Y. Hu and T. Dennis, “Textured Image Segmentation by Context Enhanced Clustering”, IEE
Proc.-Visual Image and Signal Processing, 141, 6 (1994) 413-421.

R. Lerski, L. Schad, “The Use of Reticulated Foam in Texture Test Objects for Magnetic
Resonance Imaging”, Magnetic Resonance Imaging 16, 9 (1998) 1139-1144.

R. Lerski, K. Straughan, L. Schad, D. Boyce, S. Bluml, 1. Zuna, “MR Image Texture Analysis
— An Approach to Tissue Characterization”, Magnetic Resonance Imaging 11 (1993) 873-
887.

J. Shiirmann, Pattern Classification, John Wiley and Sons, New York, 1996.



http://phase.pki.uib.no/~costb11/

