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Abstract

Visual  discrimination  between  barley  varieties  is  difficult,  and  it  requires  training  and
experience. The development of automatic methods based on computer vision could have positive
implications for the food processing industry. In the brewing industry, varietal uniformity is crucial
for the production of high quality malt. The varietal purity of thousands of tons of grain has to be
inspected upon purchase in the malt house.

This paper evaluates the effectiveness of identification of barley varieties based on image-
derived shape, color and texture attributes of individual kernels. Varieties can be determined by
means of discriminant analysis, including reduction of feature space dimensionality, linear classifier
ensembles and artificial neural networks, with high balanced accuracy ranging from 67% to 86%.
The study demonstrated that classification results can be significantly improved by standardizing
individual  kernel  images  in  terms  of  their  anteroposterior  and  dorsoventral  orientation  and
performing additional analyses of wrinkled regions.

1. Introduction

Barley is a major cereal grain used for both human consumption and animal feed. A total of
47 spring  barley  varieties  (30  malting  varieties  and 17  fodder  varieties)  and  17  winter  barley
varieties are currently included in the Polish National List. Since certain varieties are suitable for
specific applications, adequate selection is a crucial step in barley grain processing. For instance,
barley grain used for malting should be characterized by low protein content, uniform size and high
quality. Therefore, grain has to be controlled for varietal purity and technological quality at every
stage of processing (Hulasare et al., 2003). 

There are several methods of cereal grain testing, including immunological analysis, DNA
analysis, high-performance liquid chromatography, protein electrophoresis and isoenzyme analysis.
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Most of those methods are labor intensive and expensive, and the analyses can only be performed
by specialized laboratories. An alternative approach involves visual evaluation of grain for varietal
classification in line with the International Rules for Seed Testing developed by the International
Seed Testing Association (ISTA). The following physical parameters are generally evaluated during
a visual inspection: kernel color, kernel shape, shape of lemma base, ventral crease hairs, rachis
hairs, teeth on lateral dorsal nerves, wrinkling of the lemma and palea, shape and hairs of lodicules.
This  technique  is  much  easier  to  apply  than  chemical  methods,  but  the  reliability  of  visual
evaluation is largely dependent on the skills and experience of the evaluator. 

Computer  image  analysis,  a  rapid  and  low-cost  technique,  is  an  alternative  method  that
evaluates selected physical attributes of kernels. Varietal classification of cereal grains by computer
vision has been widely discussed in literature (Mebatsion et al., 2013; Neuman et al., 1987; Visen et
al., 2002; Zapotoczny, 2011a, 2011b). However, none of the cited studies involved correction of
image orientation, and classification models relied on analyses of whole kernel regions only. By
contrast, an algorithm (Szczypiński and Zapotoczny, 2012) was developed to analyze kernel images
in terms of the dorsoventral  (the side with or without the crease is  visible) and anteroposterior
(germ-brush  direction  along the semi-symmetric axis)  orientation of kernels. Kernel images were
segmented  into  specific  areas  that  were  inspected  individually.  The  proposed  procedure  was
motivated  by  the  assumption  that  the  shape  and  properties  of  a  kernel's  wrinkled  region  are
genetically determined. A kernel's ventral and dorsal surfaces could have different properties that
should be analyzed by distinct algorithms.

Image classification usually involves computation of image attributes (features). An image
attribute is a numeric quantity that characterizes the image or its fragment. Numerous algorithms for
feature computation focus on different aspects of image appearance, such as brightness and color
distribution, texture, shape and topology of a region. Those attributes can be examined in cereal
analysis. Neuman et al. (1989) analyzed the color attributes of cultivars belonging to different wheat
classes and demonstrated significant differences between varieties. Paliwal et al. (1999) relied on
color attributes and shapes described by the Fourier transform of a radial function  to distinguish
between  kernels  of  wheat,  barley,  oats  and  rye.  Image  histogram  parameters  computed  from
monochrome images of a wheat bulk sample proved to be useful for the estimation of moisture
content (Manickavasagan et al.,  2008). Zielinska et al.  (2012) used image texture attributes and
morphological (shape) properties to classify four red clover cultivars.

Thousands of attributes can be used to characterize an individual image, depending on its
specific application (Szczypinski et al., 2009). Thus, every analyzed image is described by attribute
vectors  with  thousands of  dimensions.  A statistical  analysis  is  then  carried  out  to  examine the
distribution of attribute vectors in high-dimensional spaces that are not easy to handle. For instance,
overfitting may take place in highly complex models where the number of parameters significantly
exceeds  the  number  of  observations  (Berthold  and Hand,  2003).  This  leads  to  poor  predictive
performance as the classifier trained on a set of examples fails to correctly recognize other data. In
cereal classification, the artificial neural network is often a method of choice (Goyal, 2013). Neural
network classifiers such as multilayer perceptrons allow for nonlinear decision boundaries, and they
easily fit exemplary data if the hidden layer contains a large number of neurons. Unfortunately, a
higher number of neurons increases the risk of overtraining (Jain et al., 2000), which also leads to
poor predictive performance.

The goal of this paper was to evaluate the feasibility of image-driven classification of 11
barley varieties and to identify subsets of attributes with the highest discriminatory ability. The
study also set out to establish whether information related to a kernel's wrinkled subregion and its
dorsoventral and germ-brush orientation improves classification performance. 
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2. Materials and Methods

Grain samples used in this study were obtained from selected farms in the Region of Warmia
and Mazury, NE Poland. The experimental material consisted of 11 varieties of two-rowed barley:
Afrodita,  Blask,  Bordo,  Conchita,  Kormoran,  Mercanda,  Prymus,  Serwal,  Signora,  STH  and
Victoriana. The differences between kernels belonging to the evaluated varieties are unlikely to be
identified by an untrained assessor. Effective discrimination between varieties requires training and
experience.

In  accordance  with  ISTA recommendations,  grain  should  be  rinsed  with  water  before  a
sensory evaluation to expose its texture and color. In this study, grain was not rinsed to improve its
surface condition because in line with the applied methodology, unwashed grain is more difficult to
classify. Therefore,  the proposed methodology would be validated more effectively if  tested on
unwashed grain.

The images were acquired in color at the resolution of 400 dpi, 24 bits per pixel, in the Epson
4990 flatbed scanner. The scanner was placed in a compartment covered with black velvet and its
top  cover  was  removed.  The  kernels  were  positioned  manually  using  a  template  with  holes
punctured specifically for this purpose. When all holes were filled with kernels, excess kernels and,
consequently, the template were removed. This technique supported uniform spacing of 450 kernels
per scan. However, individual kernels can be rotated, and they can produce images of the dorsal or
the ventral side. The resulting images show relatively bright and disjoint kernel areas on a dark
background (Fig. 1). In total, 33 scanned images of 11 barley varieties were acquired, with three
images per variety, which resulted in more than 13000 individual objects for analysis.

One of the objectives was to determine whether identification of dorsoventral  orientation,
correction of the germ-brush direction and supplementary analysis of wrinkled subregions would
improve classification results. The other goal was to identify attributes that best discriminate barley
varieties. The experiment had the following design: kernels were identified in images and described
individually in terms of their numerical properties – attributes. Images of individual kernels were
rotated  with  respect  to  the  germ-brush  direction  and  split  into  two  groups  based  on  their
dorsoventral orientation. The resulting images were repeatedly numerically characterized. Wrinkled
kernel areas were determined and their attributes were computed to supplement the characteristics
of rotated kernel images.  The analysis  produced data sets characterizing kernel images at  three
increasingly advanced preprocessing levels. A discriminant analysis was performed separately on
the three data sets, and it involved attribute selection and classification. The analysis revealed kernel
properties  that  were  most  suitable  for  varietal  discrimination  and  demonstrated  whether  the
proposed image processing method affected classification performance. 

Analytical  steps  are  explained  in  detail  in  the  following  subsections,  including  image
processing to identify individual kernels and determine their orientation (section 2.1), computation
of image features to numerically characterize every object's texture, color and shape (section 2.2),
and supervised learning to select attributes that best discriminate barley varieties and contribute to
high performance classification (section 2.3). 

2.1. Image preprocessing

An image is processed to increase its suitability for the following analytical step, which is the
computation  of  kernel  attributes.  Morphological  features  strictly  depend  on  the  region  shape.
Brightness, color and texture differ between kernel regions and the image background. For these
reasons it is crucial to accurately outline image regions corresponding to the kernels, to correctly
estimate the attributes. Selected attributes are rotation dependent – their values change as the image
is rotated. The above poses problems in descriptions of kernel geometry or texture, since rotation
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dependent  attributes  may  be  incorrectly  estimated  for  unaligned,  diversely  rotated  objects.
Attributes characterizing brightness distribution also differ between kernels viewed from the dorsal
or the ventral side. Those differences may hamper varietal classification.

To  address  the  above  issues,  we  have  designed  an  image  preprocessing  algorithm  that
involves segmentation,  identification of kernel region images, determination of kernel orientation
and adjustment of  germ-brush alignment (Fig. 1). The algorithm has been described in detail by
Szczypiński and Zapotoczny (2012). The essentials are briefly recalled in this paper. 

The  first  step  is  image  segmentation,  which  splits  image  pixels  into  two  subsets:  image
background and kernel areas. Since kernel regions are brighter than the background, the image
gray-level thresholding method is used – pixels darker than the experimentally established threshold
are assigned to the first subset and the remaining ones are allocated to the second subset. Image
elements brighter than the threshold form disjoint regions that correspond to individual kernels.
Such regions are not always uniformly connected, they may contain undesirable holes, and their
contours  are  usually  rough.  To  address  these  problems,  morphological  opening  and  closing
algorithms  are  applied.  The  opening  operator  removes  small-sized,  peninsula-shaped  remnants
located near contours, whereas the closing algorithm removes gulf-shaped cavities and holes. The
isolated  regions  corresponding  to  individual  kernels  are  then  identified  and  stored.  The
preconditioned images constitute the S data set.

Kernel  orientation is  determined in the next  step.  Two issues  are  addressed at  this  point.
Firstly, the angle of the anteroposterior axis is determined, and the image is rotated by that angle.
Secondly, a kernel's visibility is determined from dorsal and ventral sides, and the images are split
into two subsets accordingly. To determine the germ-brush direction, the boundary of every kernel
is approximated by an ellipse whose longer diameter roughly designates the anteroposterior axis.
Barley kernels are wider on the germ side and narrower on the other side. Therefore, germ and
brush sides are determined by measuring kernel width on both sides of an ellipse's shorter diameter.
Finally, the dorsoventral orientation is established by crease detection.  The crease forms a dark
elongated area across the mid-line of the grain that can be distinguished by grey-level thresholding.
All images from the S data set are rotated in the germ-brush direction and split into two subsets: V –
showing the ventral side, and D – showing the dorsal side of a kernel.

The last stage of image preprocessing involves the identification of wrinkled regions.  The
regions are discriminated based on their fine-grained texture, a mixture of relatively small dark and
bright patches, whereas the remaining part of the kernel surface looks relatively smooth (Fig. 2). A
gray-level run-length analysis was carried out to identify wrinkled regions (Haralick, 1979).  The
concept is based on the observation that vertical pixel runs of similar gray-levels are shorter in
wrinkled areas, whereas longer pixel runs are observed in smooth areas. The run length attribute is
mapped onto the image, where low attribute values indicate the wrinkled area and higher values
denote the smooth area. Kernel images from V and D sets supplemented with information about the
corresponding wrinkled regions constitute two data sets denoted as V+ and D+, respectively.

2.2. Computation of attributes

An image attribute, or a feature, is a numerical indicator that describes the properties of an
image or its region. In the attribute computation procedure, the image is analyzed to determine the
value of a numerical indicator. Various algorithms have been proposed for computing attributes that
characterized different aspects of a region, including shape, brightness, texture or color. To describe
an image appearance comprehensively, a feature vector (a certain number of ordered attributes) is
used. In successive stages of image analysis, such vector distribution may be examined by pattern
recognition methods.

A total of 54 morphological features were used in this study to describe the shape of an image
region (Majumdar and Jayas, 2000; Pavlidis, 1980; Zapotoczny, 2011b). They included estimations
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of a region's area, height, width, perimeter, maximum and minimum diameters, etc. The results of
those measurements are used to calculate more complex factors, such as aspect ratio, area ratio,
circularity, elongation, slenderness, compactness, corrugation, Malinowska's ratio, Danielson index
and  Blair-Bliss  ratio.  Morphological  features  also  include  geometrical  moments,  including  the
center of gravity, as well as metrics describing the distance between an object's perimeter and its
center. The width, height and area of inscribed and circumscribed squares, circles and ellipses are
also estimated.

Texture  can be  determined in  terms of  spatially  arranged complex pixel  patterns  that  are
somewhat homogeneous in appearance. Texture attributes can be determined with the use of three
computation approaches: statistical, model-based and image-transform. In the statistical approach,
texture  is  represented  by  non-deterministic  properties  of  gray-level  distributions  and  spatial
relationships. Statistical metrics include the mean, variance, skewness or percentiles of the original
image histogram. The attributes derived from the grey-level co-occurrence matrix (Haralick et al.,
1973) and the grey-level run-length matrix (Haralick, 1979) are also computed. In the model-based
approach, texture is interpreted with the use of generative image models or stochastic models (Jain,
1989; Materka and Strzelecki, 1998). The method used in this study relies on the parameters of an
auto-regressive model, where pixel intensity is predicted as the weighted sum of four neighboring
pixel intensities. The modeled parameters are the weights and the variance of a prediction error.
Transform-based  methods  rely  on  Fourier,  Gabor  or  wavelet  transforms  to  decompose  and
characterize  an  image  in  terms  of  its  frequency  or  wavelet  components  (Mallat,  1989).  The
attributes of barley kernels are derived from the Gabor transform (Feichtinger, 1998; Gabor, 1946),
and they describe the magnitudes of frequency components.

In this study, 13 statistical metrics based on the original image and 10 metrics based on image
gradient maps were used to describe gray-level distributions. They included the mean, variance,
skewness, kurtosis and several percentiles. Eleven grey-level co-occurrence matrix attributes were
applied: angular second moment, contrast, correlation, sum of squares, inverse difference moment,
sum average, sum variance, sum entropy, entropy, difference variance and difference entropy. All
attributes were computed for four directions and three distances between pixels. Five attributes were
based on the run-length matrix: short run emphasis, long run emphasis, grey-level nonuniformity,
run-length  nonuniformity  and  fraction,  and  they  were  computed  in  four  different  directions.
Moreover,  four-parameter  autoregressive  model  and  magnitudes  of  Gabor  transform frequency
components for 4 directions and 5 scales were used.

Color features are computed from the components of various color models. In this study, the
components of the following color models were investigated: RGB (the natural representation for
image scanners), YUV, YIQ, HSB, CIE XYZ and CIE Lab. The components of every model carry
complementary information. For instance, every component of the HSB model describes different
aspects of an image color, such as hue, saturation or brightness. Attributes were statistical features
extracted from individual color component histograms (Sangwine and Horne, 1998; Szczypiński et
al., 2014) including mean and variance. A total of 20 color attributes were used.

As a  result  of  feature  computation,  every  kernel  belonging to  data  sets  S,  V  and D  was
characterized by a vector of 295 attributes. The attributes of images from data sets V+ and D+ were
computed  within  a  kernel  region and within  the  wrinkled  subregion to  produce  a  total  of  590
attributes. The features were computed in MaZda software (Szczypinski et al., 2009).

2.3. Selection of attributes and classification

Computation  of  a  large  number  of  attributes  is  time  consuming,  and  several-hundred-
dimensional spaces are difficult to study. In many cases, only a limited number of features carry
information that is relevant for discrimination. What is more, the use of a limited number of features
in the  classification  algorithm  is  profitable  since  it  reduces  the  required  computational  effort.
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Therefore, in order to identify these most discriminative attributes, the classifier training stage is
preceded by the attributes selection (Blum and Langley, 1997; Kohavi and John, 1997). 

There are two general approaches to attribute selection in data mining. In the filter strategy,
attribute  saliency  is  estimated  individually,  and  the  main  advantage  is  low  computational
complexity.  However,  the  discriminative  power  of  a  feature  may  be  revealed  only  when  it  is
accompanied by other attributes. Thus, a subset of individually optimized features may prove to be
inferior to the actual best solution. In the alternative wrapper approach, the discriminative power of
attribute subsets is evaluated. The efficiency of the process depends on the strategy of constructing
subsequent feature subsets and the computational complexity of the evaluation routine. It should be
noted that testing all possible attribute combinations is not feasible for high-dimensional feature
subspaces and computationally demanding evaluation routines.

The proposed feature selection algorithm combines the above mentioned two strategies. The
selection begins  with estimation of discriminative power of individual features. Subsequently, all
combinations of attribute pairs and triples are examined. The tributes are then ordered according to
their discrimination ability. For higher-dimensional feature subspaces examination of all possible
combinations is extremely time consuming. To overcome this obstacle, the search is limited in time,
and the attributes that had been highly ranked so far are examined first.

The discriminative  power  of  an  attribute  subset  is  related  to  the  performance of  a  given
classification  algorithm.  Hence,  a  set  of  features  selected  for  a  particular  classifier  may  be
unsuitable for another classifier. In this study, attributes were selected alternatively for two criteria:
Fisher's linear discriminant and balanced accuracy of a nonlinear classifier with hyperellipsoidal
decision boundary (HDB).

The first criterion is computed with the use of linear discriminant analysis (LDA) (Fukunaga,
1990) to determines a linear combination of features that best separate vectors of different classes.
Fisher's linear discriminant is an optimization criterion defined as the ratio of variance of all vector
combinations to the sum of the combination variances in separate classes. If feature vectors inside
classes  are  normally  distributed,  the  best  linear  discrimination  is  achieved  by  maximizing  the
criterion. 

There exist vector distributions that cannot be effectively discriminated by linear classifiers,
and the  LDA will  not  yield  satisfactory  results.  Among them,  there  are  distributions  in  which
vectors  of  one  variety  (class)  form relatively  small  clusters  surrounded  by  clusters  of  vectors
representing  other  varieties.  Since  such  clusters  cannot  be  discriminated  by  a  hyperplane,  the
attribute subspace would be dismissed by LDA as irrelevant. Regardless of the above, the subspace
is useful in nonlinear classification where a hypersurface rather than a hyperplane is used as the
decision boundary.

A nonlinear  HDB classification  method  for  discriminating  barley  varieties  was  proposed
based  on  the  above  findings.  The  algorithm  finds  the  decision  boundary  and  estimates  the
discrimination  ability  of  a  given  feature  subspace.  The  working  principle  of  the  algorithm  is
presented in Figure 3. A principal component analysis (PCA) (Fukunaga, 1990) is performed on
vectors of a class to be separated from other classes. The PCA transforms the feature space (or a
subspace) into a space of principal components, which are uncorrelated and ordered accordingly to
their standard deviations. The decision boundary is a hyperellipsoid with its center located in the
center  of the cluster, and radii  aligned with the principal  components  and proportional  to their
standard deviations.  The size of hyperellipsoid is adjusted to increase the balanced accuracy of
classification and to expand the margin between the vectors of separated classes.

Balanced accuracy estimates the performance of binary classification. It is the average of two
ratios: the number of vectors correctly assigned to the first class to the number of vectors actually
belonging to the first class, and the number of vectors correctly assigned to the second class to the
number of vectors actually  belonging to  the second class.  In  the proposed algorithm, balanced
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accuracy is a step function of the hyperellipsoid size. The size of the hyperellipsoid is therefore
established by determining the center of the widest interval at which balanced accuracy is maximal.

In LDA-driven feature selection, the classes are analyzed in pairs, and the goal of the analysis
is to differentiate the two classes. This is a reasonable approach because the vectors of two different
classes should form two clusters separated by a hyperplane. Eleven varieties were analyzed in this
study, therefore, 55 such pairs had to be investigated which in turn resulted in 55 linear classifiers.
Every class is determined by ten of the classifiers. This classifier ensemble was used to identify
barley varieties.  Every feature vector was presented to all  the classifiers.  It  was  identified as a
member  of  a  specific  class  if  all  the ten  classifiers  corresponding with the class  confirmed its
membership.

Unlike the linear classifier, the classifier with a hyperellipsoidal decision boundary should
discriminate  a  vector  belonging to a given class from all  other vectors.  Therefore,  the relevant
strategy for feature selection and data classification differs from the previously described procedure.
In this approach, eleven classifiers are designed, each responsible for identifying one of the eleven
varieties.

An  artificial  neural  network  (NN)  was  used  as  the  classification  reference  method.  This
choice was motivated by the fact that neural networks are well suited for complex, non-linear and
multi-class problems (Chrzanowski et al., 2008; Materka, 1995; Materka and Mizushina, 1996). An
advantage of NNs is that carefully trained networks exhibit  high generalization capabilities and
ensure good performance in training and testing data sets. Among various NN architectures, the
multilayer feedforward network (Arbib, 2003; Witten and Frank, 2005) is a widely recognized tool
of choice in machine learning, including cereal assessment. 

A three-layer network was used in the experiment. A set of attributes obtained by LDA-driven
selection was input into the NN. The output layer of the network was determined by the number of
classes, and it comprised 11 nodes, each corresponding to one of the eleven classes. The hidden
layer  was  composed  of  20  neurons  to  minimize  the  risk  of  overfitting  and  guarantee  high
classification accuracy. The scaled conjugate gradient (SCG) method (Møller, 1993) was applied for
training. It is a fast algorithm designed specifically for large-scale problems. SCG outperforms the
standard  back  propagation  method  and  many  other  adaptive  optimization  techniques,  such  as
conjugate gradient with line-search (CGL) or quasi-Newton learners. Moreover, it does not require
any user-dependent parameters and supports fully automated determination of network weights.

All  three  approaches  to  varietal  classification  are  supervised  learning  methods.  Those
methods generate rules for discrimination, but the suitability of those rules for classifying similar
data that have not yet been included in training data sets remains uncertain. Therefore, the utility of
the classification scheme have to be validated. For this purpose, a 4-fold cross-validation technique
(Witten and Frank, 2005) was applied, and vector sets were randomly divided into four possibly
equinumerous subsets. One of the subsets was retained for validation purposes, and the remaining
three subsets were used for training. The cross-validation process was repeated four times for each
of the four subsets. The results were presented as average classification performance metrics for all
four validation tests.

3. Results

The objective of this study was to determine: (i) whether color, texture and shape attributes
support  image-based discrimination of  barley varieties,  (ii)  whether  and to  what  extent  images
should be preprocessed to obtain the best classification results, (iii) which feature space reduction
technique produces the most discriminating attributes for the classification of barley kernels, and
(iv) what is the optimal number of selected features.

To address objectives (ii) and (iii), S, V, D, V+ and D+ data sets were input into the described
selection and classification algorithms. The highest values of classification performance indicate the
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most effective algorithm and the required level of image preprocessing.  Linear  classifiers were
trained to discriminate each variety against every other variety. A total of 55 pairs were investigated
in  5  data  sets  and  4  folds.  Hyperellipsoidal-decision-boundary  classifiers  were  trained  to
discriminate  individual  varieties  from all  the  others.  Eleven classifiers  were  trained to  identify
varieties in 5 data sets and 4 folds. The above resulted in 1320 inferencing processes where the
selected attributes and classification rules varied in each case. Moreover, the neural network was
also trained on 5 data sets and 4 folds. The resulting data set is enormous, and it cannot be presented
due to space constraints, therefore, only representative samples averaged across the folds are shown.

The averaged balanced classification accuracy of the three discussed classifiers obtained from
5  data  sets  is  presented  in  Table  1.  Classification  performance  increased  in  successive  image
preprocessing  steps.  The  highest  balanced  accuracy  of  0.91  was  achieved  by  linear  classifier
ensembles in the D+ data set, and it was higher by 0.04 in comparison with that reported in the S
data  set.  The  above  implies  that  image  preprocessing,  which  involves  kernel  side  detection,
correction of germ-brush orientation and wrinkled area identification, decreases classification error
by 4%. A similar tendency was noted in the two remaining classifier techniques – the higher the
image preprocessing, the greater the classification accuracy. 

To demonstrate that image processing affects classification accuracy, an alternative hypothesis
postulating  that  image  processing  has  no  significant  impact  on  classifier  performance  was
formulated.  In  this  case,  classification  accuracy  should  randomly  increase  or  decrease  as  the
classifier is first validated on the  S set and than on the  V+ or  D+ set. In the group of 55 linear
classifiers, classification performance improved in 40 cases and somewhat deteriorated in 15 cases
after  the  correction  of  kernel  orientation  and  supplementary  analysis  of  wrinkled  regions.  The
probability that classification performance improved in 40 or more cases (p-value) equals 0.00051,
which is much below the significance level of 0.01. The above observation disproves the alternative
hypothesis  and  indicates  that  adjustment  of  kernel  orientation  and  supplemental  analysis  of
wrinkled regions have significant implications for classification performance. 

Averaged  classification  accuracy  of  linear  and  HDB  classifiers  is  presented  in  Table  2.
Balanced accuracy was computed for different dimensionalities of selected feature subspaces to
indicate  subspace  dimensionality  with  the  highest  discriminatory  power  (objective  iv).  The
performance of linear classifier ensembles improved rapidly up to 6-dimensional subspaces. For
higher-dimensional  subspaces,  the  observed  improvement  was  less  significant,  and  the  highest
value of 0.924 was noted for feature space projection. In HDB classifiers, the optimal number of
selected  attributes  is  7  with  balanced  accuracy  of  0.757.  A further  increase  in  dimensionality
reduces the accuracy. 

The confusion matrices of the linear classifier ensemble and the artificial neural network are
presented  in  Tables  3  and  4,  respectively.  In  both  cases,  columns  represent  prediction
(classification)  results  and  rows  represent  a  true  category  of  kernels.  The  values  express  the
percentage of kernels of a given variety assigned to the same or another variety. Both linear and NN
classifiers were trained on the same selected attribute sets. The applied sets comprised six attributes
each, which were selected to maximize  Fisher's linear discriminant. The choice of the selection
algorithm and the number of attributes in the examined subspaces were justified by the results
presented in Table 2.

In linear classifiers, Prymus was the most effectively classified variety where 65% of kernels
were correctly identified.  Less than 40% of Kormoran kernels were recognized, which was the
worst  case  scenario.  The above  scores  may  seem inconclusive  for  the  determination  of  kernel
variety. In practice,  however, the final decision is  made based on a grain sample consisting of
several hundred kernels, by finding a class that is assigned the largest number of elements. The
confusion index, defined as the ratio of the highest number of incorrect detections of a single class
to the number of correct detections, can be computed to evaluate classification performance. In the
linear classifier  ensemble,  the highest value of the confusion index at  0.27 was reported in the
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Serwal class where 12.87% of kernels were incorrectly assigned to the STH variety and where
46.89% of kernels were correctly classified. 

The NN classifier is superior to the linear classifier ensemble. It correctly recognized 86% of
Blask kernels in the best case scenario and 67% of Kormoran kernels in the worst case scenario.
The highest confusion index of 0.10 was observed in the Victoriana class where 7.16% of kernels
were incorrectly assigned to the Mercanda variety and more than 70% of kernels were classified
correctly. 

4. Discussion and Conclusions

The results  of this  study indicate  that determinations of an individual kernel's  variety are
inconclusive. The error of classification (NN classifier) can be as high as 30%. Yet in practice, there
is  no  need  to  establish  the  varietal  membership  of  individual  kernels.  The  variety  is  usually
identified based on a grain sample comprising at least several hundred kernels. Therefore, variety
can be determined in relation to the class assigned the highest number of vectors. Consequently,
varieties are unlikely to be confused because the number of correct classifications is at least 10
times higher (Table 3 and 4) than the number of incorrect matches. Therefore, it can be concluded
that the proposed method based on color, texture and shape attributes is useful for discriminating
barley varieties.

Feature selection experiments validated the effectiveness of both selection algorithms. The
optimal number of attributes in subsets was determined at seven for the hyperellipsoidal-decision-
boundary classifier. The above supports varietal discrimination where the average percentage of
correctly  identified  kernels  exceeds  75%.  The  results  produced  by  the  NN  classifier  are  of
comparable quality, where 67% - 86% of kernels were correctly identified. The linear classifier
ensemble  enabled  the  correct  classification  of  40%  -  65%  kernels,  which  is  not  impressive.
However, individual classifiers can differentiate between two varieties with an average of 91% of
correctly identified kernels. This should be considered a very good result. 

The optimal number of attributes in subsets was established at 6 or 7. A higher number of
attributes did not significantly improve the performance of linear classifiers and deteriorated the
performance  of  the  HDB  classifiers.  No  specific  attributes  or  groups  of  attributes  capable  of
discriminating  all  varieties  could  be  identified.  The subspaces  of  selected,  most  discriminating
attributes  varied  between  classifiers  and  training  sets.  Therefore,  we  were  unable  to  identify
attributes  that  would  be  generally  considered  as  most  suitable  for  the  varietal  classification  of
barley.

The  study  demonstrated  that  image  preprocessing  significantly  influences  classification
results.  The most  accurate  classification results  were obtained in kernel  images standardized in
terms of anteroposterior and dorsoventral  orientation.  A supplementary analysis  of the wrinkled
region also improved the accuracy of successive classification procedures. 

The results of the study are promising, and they should pave the way to further research with
the aim of developing an effective model for successive growing seasons. A detailed methodology
for preparing grain for analysis should be also developed. It should enhance the quality of scanned
kernel images and expose surface texture attributes specific to a given variety. Grain could also be
sorted before scanning to eliminate undeveloped kernels and objects of inadequate shape, color or
texture that could affect classification quality.



10

Acknowledgments

The authors wish to thank the Polish Ministry of Science and Higher Education for financial
support as part of grant No. 4498/B/P01/2010/39. The following computer programs were used in
the  study:  Ziarna  (https://gitorious.org/ziarna)  for  kernel  image  preprocessing  and  MaZda
(https://gitorious.org/qmazda) for attribute computation and feature selection.

References

Arbib, M.A., 2003. The Handbook of Brain Theory and Neural Networks. MIT Press.
Berthold, M., Hand, D.J. (Eds.), 2003. Intelligent data analysis: an introduction, 2nd rev. and 

extended ed. ed. Springer, Berlin ; New York. 
Blum, A.L., Langley, P., 1997. Selection of relevant features and examples in machine learning. 

Artif. Intell. 97, 245–271.
Chrzanowski, L., Drozdz, J., Strzelecki, M., Krzeminska-Pakula, M., Jedrzejewski, K.S., Kasprzak, 

J.D., 2008. Application of Neural Networks for the Analysis of Intravascular Ultrasound and
Histological Aortic Wall Appearance-An In Vitro Tissue Characterization Study. Ultrasound 
Med. Biol. 34, 103–113. doi:10.1016/j.ultrasmedbio.2007.06.021

Feichtinger, H.G., 1998. Gabor analysis and algorithms: Theory and applications. Birkhauser 
Boston.

Fukunaga, K., 1990. Introduction to statistical pattern recognition. Academic Press.
Gabor, D., 1946. Theory of communications. J. Inst. Electr. Eng. 93, 429–457.
Goyal, S., 2013. Predicting properties of cereals using artificial neural networks: A review. Sci. J. 

Crop Sci. Vol 2 No 7 2013 July.
Haralick, R.M., 1979. Statistical and structural approaches to texture. Proc. IEEE 67, 786–804.
Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification. 

Syst. Man Cybern. IEEE Trans. On 3, 610–621.
Hulasare, R., Dronzek, B., Jayas, D., 2003. Grain-Grading Systems, in: Ramaswamy, H., Vijaya 

Raghavan, G., Chakraverty, A., Mujumdar, A. (Eds.), Handbook of Postharvest Technology. 
CRC Press, pp. 41–55.

Jain, A.K., 1989. Fundamentals of digital image processing. Prentice-Hall, Inc.
Jain, A.K., Duin, R.P.W., Jianchang Mao, 2000. Statistical pattern recognition: a review. Pattern 

Anal. Mach. Intell. IEEE Trans. On 22, 4–37.
Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artif. Intell. 97, 273–324. 

doi:doi: 10.1016/S0004-3702(97)00043-X
Majumdar, S., Jayas, D.S., 2000. Classification of cereal grains using machine vision: I. 

Morphology models. Trans. ASAE 43, 1669–1675.
Mallat, S.G., 1989. Multifrequency channel decompositions of images and wavelet models. Acoust. 

Speech Signal Process. IEEE Trans. On 37, 2091–2110.
Manickavasagan, A., Sathya, G., Jayas, D.S., White, N.D.G., 2008. Wheat class identification using 

monochrome images. J. Cereal Sci. 47, 518–527. doi:10.1016/j.jcs.2007.06.008
Materka, A., 1995. Neural network technique for parametric testing of mixed-signal circuits. 

Electron. Lett. 31, 183–184. doi:10.1049/el:19950148
Materka, A., Mizushina, S., 1996. Parametric signal restoration using artificial neural networks. 

IEEE Trans. Biomed. Eng. 43, 357–372. doi:10.1109/10.486256
Materka, A., Strzelecki, M., 1998. Texture analysis methods-a review (COST B11). Technical 

University of Lodz, Institute of Electronics.
Mebatsion, H.K., Paliwal, J., Jayas, D.S., 2013. Automatic classification of non-touching cereal 

grains in digital images using limited morphological and color features. Comput. Electron. 



11

Agric. 90, 99–105. doi:10.1016/j.compag.2012.09.007
Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural 

Netw. 6, 525–533. doi:http://dx.doi.org/10.1016/S0893-6080(05)80056-5
Neuman, M.R., Sapirstein, H.D., Shwedyk, E., Bushuk, W., 1989. Wheat grain colour analysis by 

digital image processing I. Methodology. J. Cereal Sci. 10, 175–182. doi:10.1016/S0733-
5210(89)80046-3

Neuman, M., Sapirstein, H.D., Shwedyk, E., Bushuk, W., 1987. Discrimination of wheat class and 
variety by digital image analysis of whole grain samples. J. Cereal Sci. 6, 125–132. 
doi:10.1016/S0733-5210(87)80049-8

Paliwal, J., Shashidhar, N.S., Jayas, D.S., 1999. Grain kernel identification using kernel signature. 
Trans. ASAE 42, 1921–1924.

Pavlidis, T., 1980. Algorithms for shape analysis of contours and waveforms. IEEE Trans. Pattern 
Anal. Mach. Intell. 2, 301–312.

Sangwine, S.J., Horne, R.E.., 1998. The colour image processing handbook. Chapman & Hall.
Szczypiński, P., Klepaczko, A., Pazurek, M., Daniel, P., 2014. Texture and color based image 

segmentation and pathology detection in capsule endoscopy videos. Comput. Methods 
Programs Biomed. 113, 396–411.

Szczypinski, P.M., Strzelecki, M., Materka, A., Klepaczko, A., 2009. MaZda - A software package 
for image texture analysis. Comput. Methods Programs Biomed. 94, 66–76. doi:doi: 
10.1016/j.cmpb.2008.08.005

Szczypiński, P.M., Zapotoczny, P., 2012. Computer vision algorithm for barley kernel identification,
orientation estimation and surface structure assessment. Comput. Electron. Agric. 87, 32–38.

Visen, N.S., Paliwal, J., Jayas, D.S., White, N.D.G., 2002. AE—Automation and Emerging 
Technologies: Specialist Neural Networks for Cereal Grain Classification. Biosyst. Eng. 82, 
151–159.

Witten, I.H., Frank, E., 2005. Data Mining. Practical Machine Learning Tools and Techniques. 
Morgan Kaufmann.

Zapotoczny, P., 2011a. Discrimination of wheat grain varieties using image analysis and neural 
networks. Part I. Single kernel texture. J. Cereal Sci. 54, 60–68.

Zapotoczny, P., 2011b. Discrimination of wheat grain varieties using image analysis: morphological
features. Eur. Food Res. Technol. 233, 769–779.

Zielinska, M., Zapotoczny, P., Białobrzewski, I., Zuk-Golaszewska, K., Markowski, M., 2012. 
Engineering properties of red clover (Trifolium pratense L.) seeds. Ind. Crops Prod. 37, 69–
75. doi:10.1016/j.indcrop.2011.12.002



12

Table 1.  Average balanced classification accuracy for various steps of image processing. Six-dimensional subspaces 
were used.

Classifier S V D V+ D+

HDB 0.732 0.729 0.743 0.732 0.755

LDA 0.868 0.871 0.896 0.873 0.910

NN 0.869 0.875 0.884 0.895 0.893

The most adequate results are indicated with bold.

Table 2.  Average balanced classification accuracy versus dimensionality of selected subspace. The D+ data set was 
used.

Classifier 1D 2D 3D 4D 5D 6D 7D 8D 9D 10D 591

LDA 0.782 0.852 0.876 0.891 0.903 0.910 0.912 0.914 0.915 0.917 0.924

HDB 0.636 0.703 0.732 0.747 0.754 0.755 0.757 0.754 0.755 0.75 0.506

The most adequate results are indicated with bold.
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Table 3. Confusion matrix of the linear classifiers' ensemble. The D+ data set and six-dimensional subspaces were 
used.
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Afrodita 54.99 0.15 0.30 4.73 3.70 0.15 2.22 5.77 0.74 6.07 0.74

Blask 1.04 63.17 2.37 1.78 1.18 2.37 3.11 0.74 2.07 1.78 0.74

Bordo 3.70 3.85 54.59 0.30 2.22 2.22 5.03 0.30 1.33 1.48 2.96

Conchita 5.18 2.07 0.44 61.54 4.88 0.00 0.30 7.25 0.89 1.33 0.00

Kormoran 3.85 2.51 1.92 5.33 39.94 3.11 7.84 6.66 0.59 2.37 1.33

Mercanda 0.89 6.07 2.81 0.00 2.51 55.47 5.62 0.00 3.85 1.92 2.66

Prymus 0.15 0.74 2.37 0.00 3.55 1.63 65.09 0.30 2.96 1.18 1.78

Serwal 6.21 0.89 1.18 5.92 3.99 0.00 0.59 46.89 0.44 12.87 0.15

Signora 1.63 2.51 2.81 1.63 0.44 2.96 2.51 1.92 47.93 7.69 5.33

STH 6.21 0.30 1.48 1.92 3.55 1.04 3.70 8.73 2.22 43.20 1.18

Victoriana 2.51 1.92 4.29 1.04 1.63 4.44 5.77 0.59 6.95 2.22 44.82

Correct classification rates and the highest incorrect classification rate are indicated with bold.

Table 4. Confusion matrix of the artificial neural network. The D+ data set and six-dimensional subspaces were used.
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Classification result
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Afrodita 76.46 0.00 0.50 6.60 3.86 0.87 0.75 5.35 1.25 3.61 0.75

Blask 0.00 86.10 2.86 1.09 1.36 2.45 1.09 1.09 1.23 1.09 1.63

Bordo 0.80 1.61 73.95 0.64 2.89 2.73 2.41 1.29 6.59 1.61 5.47

Conchita 6.65 0.81 0.14 76.53 6.51 0.27 0.54 5.83 0.14 2.04 0.54

Kormoran 4.22 1.74 2.61 5.71 67.33 1.61 2.98 4.97 2.86 3.98 1.99

Mercanda 0.54 3.79 3.79 0.81 1.22 74.83 4.47 0.14 3.11 1.76 5.55

Prymus 0.81 0.46 2.21 0.70 2.90 3.14 79.21 0.70 3.48 1.74 4.65

Serwal 2.81 1.34 0.80 8.16 5.21 0.13 0.00 73.66 1.07 6.42 0.40

Signora 2.27 1.81 6.50 0.45 3.63 3.47 5.29 0.60 69.18 3.63 3.17

STH 4.01 1.60 1.49 2.06 2.98 1.83 1.49 6.76 2.41 73.77 1.60

Victoriana 1.49 1.35 5.41 0.41 2.43 7.16 6.49 0.27 3.65 1.22 70.14

Correct classification rates and the highest incorrect classification rate are indicated with bold.
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Fig. 1. Image preprocessing diagram and data sets for analysis: O – fragment of the original image, S – kernels

identified after image segmentation, D – adjusted orientation of the dorsal view, V – adjusted orientation of the ventral

view, D+ – dorsal view and the corresponding wrinkled areas, V+ – ventral view and the corresponding wrinkled areas.
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Fig. 2. Kernel image with an indication of the estimated location of the germ, brush and the wrinkled region.

    

(a)                                                      (b)                                                      (c)

Fig. 3. The hyperellipsoidal-decision-boundary classification concept in two dimensional space: (a) space of original

features F1 and F2, (b) space of two principal components, PC1 and PC2, obtained by PCA and (c) space of principal

components after normalization of variances. Vectors of the discriminated class are labeled with 'x', vectors of other

classes are labeled with 'o';  '+' indicates the center of a separated vector cluster.
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(a)                                                                      (b)

Fig. 4. Vector distributions in (a) Serwal-STH and (b) Conchita-Prymus classes in the most discriminating 3D

subspaces of data sets D+. Serwal and Conchita vectors are labeled with 'o' and STH and Prymus vectors are labeled

with '+'.
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