Manuscript of:

Szczypinski, P.M., Klepaczko, A., Pazurek, M., & Daniel, P. (2014)

Texture and color based image segmentation and pathology detection in capsule endoscopy videos
Computer Methods and Programs in Biomedicine, 113(1), 396-411
http://doi:10.1016/j.cmpb.2012.09.004

Texture and color based image segmentation and pathology
detection in capsule endoscopy videos

Piotr Szczypinski®, Artur Klepaczko®, Marek Pazurek®, Piotr Daniel®

@Technical University of Lodz, Institute of Electronics, Medical Electronics Division
90-924 Lodz, ul. Wolczanska 211/215
b Medical University of Lodz, Gastroenterology Department
90-153 Lodz, ul. Kopcinskiego 22

Abstract

This paper presents an in-depth study of several approaches to exploratory analysis of
wireless capsule endoscopy images (WCE). It is demonstrated that versatile texture and
color based descriptors of image regions corresponding to various anomalies of the gas-
trointestinal tract allows their accurate detection of pathologies in a sequence of WCE
frames. Moreover, through classification of single pixels described by texture features of
their neighborhood, the images can be segmented into homogeneous areas well matched
to the image content. For both, detection and segmentation tasks the same procedure is
applied which consists of features calculation, relevant feature subset selection and clas-
sification stages. This general three-stage framework is realized using various recognition
strategies. In particular, the performance of the developed Vector Supported Convex Hull
classification algorithm is compared against Support Vector Machines run in configuration
with two different feature selection methods.

Keywords: capsule endoscopy, feature selection, texture analysis, medical image
analysis

1. Introduction

Wireless capsule endoscopy (WCE) has gained a firm position in the catalogue of exam-
ination tools available in modern gastroenterology [1-3]. It is widely accepted by patients
who consider it less traumatic than traditional gastroscopy or colonoscopy. Secondly, it
provides the means to optically and non-invasively visualize interior of the small intes-
tine. Moreover, capsule endoscopy proved useful in diagnosing sources of occult bleeding
or causes of gastroesophageal reflux and abdominal pain such as Lesniewski-Crohn’s dis-
ease, erosive lesions or peptic ulcers [4-8]. On the other hand however, clinicians claim
that usage of WCE technique is a time consuming task — the video capture itself takes
about 8 hours. Then, even if the recorded sequence is played back with larger frame rate
than the recording tempo, the diagnostic session occupies at least 2 hours for a trained
physician and as such it requires high level of concentration. These disadvantages moti-
vate efforts leading to automation of WCE video inspection and they are addressed also
in this work.

Preprint submitted to Computer Methods and Programs in Biomedicine May 6, 2015



One can distinguish three principal research directions that aim at solving the problem
of computer-aided WCE diagnosis. One approach focuses on segmentation of WCE video
sequence into integral parts of the gastrointestinal tract [9-12]. This enables narrowing
the preview of the recorded sequence only to an interesting part (e.g. small intestine) and
neglect the other pieces (like oesophagus, stomach or colon).

Another direction of investigations concerns the issue of movement speed of a capsule
inside the digestive system [13]. This kind of information can be useful when describing
intestinal peristalsis or detecting occlusions. In [14] a special case of deformable model
(the model of deformable rings) is introduced and the capsule speed estimation is based on
the analysis of contents variation between subsequent WCE frames. This in turn allows to
smoothly adjust the playback ratio depending on the state of a capsule — if it moves fast
and there are sudden changes in succeeding images, the video is slowed down accordingly,
otherwise the video is played back at higher frame-rates.

Eventually, in a series of studies the task was to analyze each frame of a given video
sequence and detect images that contain certain pathological alterations in internal body
organs [15-24]. This is performed with the use of a variety of pattern recognition and
image processing techniques. The latter aim at generating proper image characteristics,
often taking into account color information derived from various color models. These
characteristics form the basis for classifying image regions as representing healthy tis-
sue or abnormal structures. Some examples of this approach include detection of ulcers,
bleedings, petechiae and tumors with the use of color and texture analysis and various
classification algorithms such as minimum distance classifier, k-nearest-neighbor or sup-
port vector machines.

This paper falls into the third category of research directions outlined above. Similarly
to other approaches we explore local texture characteristics of a WCE frame describing
its pixels by a set of texture and color-dependent features. In particular we aim at de-
signing a tool capable of efficiently detecting bleedings and different forms of ulcerations
(especially focal and excessive ones — see Fig. 1 for sample images). There are however a
few properties of our strategy which make it a unique concept. Firstly, we analyze WCE
examinations at two viewpoints realizing two independent goals: pathology detection and
image segmentation. For detection, images are divided into overlapping circular regions
of interest covering whole field of view (see Fig. 2). These regions are then described
by feature vectors and classified into one of abnormality categories. In the segmenta-
tion task images are analyzed pixel-wise, and thus every image element obtains its own
vector of features. Per-pixel classification allows distinguishing fine-grained segments of
images giving the opportunity to further process delineated regions. This post-processing
may include e.g. shape analysis or quantification of pathological alterations leading to
potentially better understanding of a given disease case.

Secondly, no specific texture or color space model is a priori preferred in the proposed
method. Instead, every pixel is ascribed a set of up to 2600 features which fully char-
acterize its proximal neighborhood and which are derived from versatile texture models
(such as histogram, grey level co-occurrence matrix, run-length matrix, image gradient,
autoregressive model and Gabor wavelets) calculated. All these features are calculated for
various color components — RGB, YUV, YIQ, HSB, CIE L*a*b, and CIE XYZ. Addition-
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Figure 1: Sample WCE images showing abnormality structures: a) bleeding, b) excessive and c) focal
ulcerations.
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Figure 2: Layout of the circular regions of interest used in detection



ally, Y-relative normalized chrominance components are also examined in order to make
texture features independent from the non-uniform lighting conditions. Furthermore, fea-
tures vary between one another by the size and shape of their local neighborhoods taken
into account during calculations. This approach assumes that in such a huge-dimensional
feature space, there exist a few significant descriptors which enable accurate tissue classi-
fication. In order to identify these most relevant features, we boost the classifier training
stage with the attribute selection procedure. The final procedures of pathology detection
and WCE video frame segmentation are performed only for the selected features which
reduces computational effort.

The problem of feature selection — being itself a challenging task [25-30] — is tackled
in our study with special attention. In the medical diagnosis context, there appears an
additional requirement regarding features discriminative capabilities. It refers to two types
of possible classifier errors — false positive (when a normal case is classified as unhealthy)
and false negative (the opposite condition). Naturally, the consequences of the second
type errors are more risky for a patient. Thus, we developed a novel feature selection
algorithm (called hereafter the vector-supported convex hull method, VSCH) designed
to minimize the false negative rate, i.e. to maximize sensitivity of the proposed WCE
computer-aided diagnosis tool.

The above considerations are discussed more closely in subsequent sections of this
paper as follows. Section 2 recalls texture analysis and color space transformation tech-
niques with the focus on methods which have found application in biomedical image
processing. A concise review of feature selection algorithms is presented in Sect. 3. The
designed VSCH method is also described therein. In Sect. 4, we demonstrate the results
of experiments which validate the proposed approach. Finally, Sect. 5 concludes.

2. Feature computation

An image feature is a numerical indicator somehow characterizing properties of the
image or its fragment. Therefore, a feature computation is a procedure which examines
the image to establish a value of such the indicator. There are various algorithms for
computation of features that focus on characterization of various aspects of image ap-
pearance, such as brightness, contrast, color or texture. Usually to describe an image
appearance comprehensively, an ordered assortment of several features is used — called a
feature vector. Further steps of image examination may involve analysis of such vectors
distributions within a vector space. Therefore, the application of image feature computa-
tion algorithms followed by the methods of pattern recognition is a way of indirect image
analysis.

The goals of image analysis range from image recognition, through detection or lo-
calization of specific details within the image to the image segmentation. In result and
as mentioned above, the features are computed to characterize the image as a whole, to
characterize some selected image region or to indicate or detect specific image property
of local nature. For that reason, features can be computed within the area of the whole
image, within the region of interest defined to cover some known and specific fragment
of the image, or within immediate neighborhood around some particular image location.
The latter allows creation of a feature map, which is the feature function in the domain
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Figure 3: Texture patterns discriminating surfaces of erosion and intenstinal villi

of image coordinates. The map is usually presented as a two-dimensional grey-level rep-
resentation of a feature value computed at every location of the input image. The maps
are used in image segmentation.

2.1. Texture based analysis

An image texture perceived by humans is a visualization of complex patterns composed
of spatially organized, repeated sub-patterns, which have a characteristic, somewhat uni-
form appearance. The texture may demonstrate specific brightness, color size, roughness,
directivity, randomness, smoothness, granulation, etc. and thus, may carry substantial
information about the structure of physical objects. In medical images it describes in-
ternal structure of human tissues or organs. Consequently, textural image analysis is an
important issue also in medical image processing and understanding.

Texture analysis plays important role in interpretation of capsule endoscopy images.
Detection of some abnormal changes involves investigation of texture properties. Example
of this is healthy small intestine mucosa with protruding the intestinal villi, which create
specific pattern within image. Such pattern do not show up in case of abnormalities, such
as erosions, ulcers or bleedings Fig. 3.

Humans usually assess texture only qualitatively, while often quantitative texture
analysis is required. To perform such quantification the texture features, mathematically
defined texture properties, have to be computed. There is a number of various algorithms
to perform such computations. However, as far as wireless endoscope video is concerned,
most of publications deal with algorithms defined by the MPEG-7 standard only [11, 12,
18, 19, 31-33]. Despite the algorithms of the standard were not particularly designed
to characterize medical images, the features computed according to the standard were
utilized in pathology detection, topological segmentation or even motion analysis.

There are several problems behind applying MPEG-7 algorithms in medical image
analysis. First, they were selected for multimedia content description — in case of images
to describe overall content of the image as such, not allowing characterization of local
image properties or arbitrary shaped regions of interest. Second, the implementation [34]
of the MPEG-7 algorithms can compute image descriptors (features or groups of features)
within rectangular regions at least 64 x 64 (or even 128 x 128 pixels in case of homogeneous



texture descriptor). These relatively big regions are not appropriate for characterization
of local image properties.

In our approach to wireless endoscope image analysis the algorithms implemented
in MaZda software [35] are used. The program can compute feature maps or feature
vectors within regions of interest of arbitrary, user-defined shape and size. It implements
statistical, model-based and image transform algorithms. It calculates statistics of image
brightness histogram, image gradient magnitude, grey-level co-ocurrence matrix, run-
length matrix, parameters of autoregressive model and energies of image signal within
frequency bands obtained by means of Haar wavelet transform. In total, there are 279
various features which can be computed. The features are computed for monochromatic
images. The utility of the software was demonstrated in numerous applications including
the analysis of medical images [35, 36].

2.2. Color components and color analysis

It is evident, that in addition to texture, the image color carries information essential
for correct interpretation of the image content. For example, in endoscopic images, the
color of fibrotic ulcer is white or light-grey, bleedings are red and normal mucosa looks
pink. The usual approach to make use of color information is an analysis of color compo-
nents of color spaces. Most often the analysis is performed on RGB color space, which is
a natural representation for displays of computer systems. However, all the three compo-
nents jointly carry information on image brightness (luminance) and are highly correlated.
The analysis of other color spaces, such as YIQ or YUV, which separate color information
(chrominance) from luminance, may be more appropriate. Figure 4 shows an example
color image of focal fibrotic ulcer surrounded by erythema and its color components in
YIQ color space. Apparently, the larger values of QQ component noticeably indicate the
pathology.

Figure 4: Focal ulcer on the small intestine wall: a) original color image, b) grey-scale intensity image,
¢) Q component image of the YIQ color space model with exposed ring-shaped erythema region arround
ulceration

It is not obvious in advance what color components of which color spaces are the most
useful to expose particular kind of abnormality. Thus, we exploit a variety of components
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of several color spaces such as RGB, YUV, YIQ, HSB, CIE XYZ, CIE L*a*b*. In addition,
we examine color component ratios such as U/Y, V/Y, /Y and Q/Y, in which the impact
of illumination intensity may be reduced even further. Therefore, the total number of color
components explored in our study is 21.

The MPEG-7 standard defines several descriptors of image color: dominant color
descriptor (DCD), scalable color descriptor (SCD), color layout descriptor (CLD) and
color structure descriptor (CSD). However, in computation of the DCD the color space
has to be arbitrarily chosen beforehand, and as mentioned above the right choice of the
color space is not obvious. Moreover, the SCD is computed by means of HSB space only.
The CLD is essentially a miniature of the whole image and the CSD is an image histogram
in HMMD space, they both extensively describe image, however, can hardly be utilized
in image segmentation or classification of small regions.

The natural way to produce exhaustive characterization of the image is to combine
color and texture analysis. The MaZda software can be used to compute texture features
for particular color component. If the features computed for different color components
are joined, it creates up to 5859 features vector (279 texture features in every of 21 color
components). After initial experiments with WCE images, we decided to preselect most
promising color components and texture description models. Eventually, in the analyses
described in Sect. 4 input feature space was narrowed to 2494 and 2600 attributes in the
case of detection and segmentation respectively.

Analysis of vector distributions in such huge-dimensional space is extremely difficult.
On the other hand, it can be supposed, the only small subset of all the features may be
sufficient for detection of images showing abnormal state of mucosa. Therefore, selection
of such features and dimensionality reduction of vector space becomes necessary.

3. Feature selection and classification

Abundance of WCE image descriptors obtained in the feature extraction procedure
involves the need to select the most significant attributes, helping to discriminate gastroin-
testinal pathology classes. In the data mining domain there exist two general approaches
to the feature selection problem [27, 37]. In the filter strategy an attribute saliency
is estimated individually according to some evaluation measure. The main advantage
of these methods is their low computational complexity as they avoid time-consuming
feature space exploration. However, it is often observed that discriminative power of a
feature emerges only when it is accompanied by some other attributes. Thus, a subset of
individually best features may occur inferior to the actual best possible solution.

In the alternative wrapper approach discriminative power of attribute collections is
evaluated based on their impact on performance of a given data classification algorithm.
Efficiency of wrapper-type feature selection largely depends on the strategy of constructing
subsequent feature subsets — candidates for final selection. Especially for high dimension
patterns and computationally-demanding classifier training techniques, testing all possible
feature combinations is intractable. In that case a search algorithm should intelligently
decide which feature subspaces should be examined in order to identify a near-optimal
solution without performing a complete search.



Taking into account very high dimension of the proposed texture- and color-based
WCE image characteristics and potentially complex structures of pathology class bound-
aries, three processing pathways have to be examined: 1) filter-type selection method
followed by an arbitrarily complex classifier, 2) wrapper-type selection with an arbi-
trary classifier and suboptimal search strategy and 3) wrapper-type selection with a
computationally-efficient classifier and globally optimal search method. In the follow-
ing we describe our choices for each of the options. Note, that for options 1) and 2) we
picked the same classifier — the Support Vector Machines (SVM) algorithm — so that effi-
ciency of both feature selection approaches in application to WCE image processing can
be compared in a credible manner. We recall the overall concept of SVM and motivate
its choice in Sect. 3.1. Then, we provide the description of the one-way ANOVA statistics
— our chosen filter-type selection method (Sect. 3.2) — and the SFFS feature space explo-
ration strategy as an example of the wrapper-type technique (Sect. 3.3). Since for both
ANOVA and SFFS selection methods, the ultimate classifier is SVM, we will refer to the
entire selection/classification process as SVM/ANOVA and SVM/SFFS respectively. In
Sect. 3.4 we outline the designed VSCH algorithm which performs well with the complete
feature search method in lower dimensions (i.e. up to 3D). Larger dimensionalities can
be still explored in the exhaustive manner but on the feature spaces restricted to the best
results found so far.

3.1. Support vector machines

The choice of a classification algorithm used to process WCE feature vectors during
the wrapper-type feature selection method must reflect its capabilities to: 1) properly
classify both linearly and non-linearly separable classes; 2) promote features which ensure
desired properties of classification results, such as small false negative error rate e.g., 3)
converge quickly and scale well with the size of a training data set in order to reduce
computational burden of the selection procedure; 4) reproduce accurate results across
different data samples so that saliency of selected attributes remains stable.

It must be noted, that the first requirement holds for both feature selectors because
even in the case of the filter-type method which is not linked to any classifier chosen a
priori, the ultimate feature set may provide better separability if non-linear boundaries
between classes are assumed allowable. Moreover, requirements 2) and 3) directly drive
the feature search and thus determine its time-efficiency and define significance of the final
reduced attribute space. The last requirement implies that performance of a classifier does
not rely on any data-dependent configuration parameters.

Therefore, in our experiments we used the Support Vector Machine (SVM) [38] clas-
sifier due to its robustness in the following aspects: the quality of generalization ensured
by the optimal margin constructed during training stage; ease of training and availability
of the off-the-shelf implementations; extendibility to non-linear cases through the use of
kernel functions and inherent resistance to statistical outliers. The SVM itself is a linear
classification algorithm which aims at constructing a decision hyperplane defined as

y(x) =b+ Z QYiX; + X, (1)

O #0



where parameters «; and b together with the support vectors x; determine location and
orientation of the separating hyperplane. The learning procedure involves solving a con-
strained quadratic optimization problem which leads to determination of «; coefficients,
whose values are non-zero only for those vectors in a training sample which lie closest (on
either side) to a decision boundary. It must be noted, that SVM algorithm constructs a
hyperplane which defines the largest margin between different data vectors classes in a
particular feature subspace. In this aspect, the further described VSCH method behaves
similarly to SVM.

Extending SVM to non-linearly separable cases involves replacement of the dot product
(+) in (1) by the kernel function which corresponds to the dot product of data vectors non-
linearly transformed into higher dimensional feature space. In this research the radial basis
function kernel was chosen:

k(xi,x;) = exp(—7|lx; — x;]%). (2)

The choice of the RBF kernel was due to the fact that it supports spherical geometry of
class boundaries. Since images of a particular pathology class are similar, also in terms
of computed features, we expect the feature vectors to form a compact cluster. On the
other hand images of reference class vary in appearance, thus the feature values will span.
Therefore, the distribution of feature vectors is scattered and may surround the cluster.

Unfortunately, as with any other kernel the RBF function needs to be adjusted to the
specific properties of a given data set. The value of v coefficient cannot be determined
automatically and several trials must be made before a trained classifier gains its discrimi-
native power. In principle the larger « is, the better accuracy on a training set is observed.
On the other hand, there appears a risk of overfitting when the value of v becomes too
large. These impediments of course violate restriction 4) mentioned above. However, due
to other advantages of SVM, the ultimate value of parameter v was fine-tuned in the
course of experiments.

3.2. Analysis of variance

The one-way analysis of variance, widely known as ANOVA [39], tests whether dif-
ferences between the means of two or more groups of a data sample are significant or
accidental. In the feature selection setting, the term groups refers to data vector classes
or categories. Then, the goal of ANOVA is to recognize those attributes which provide the
strongest evidence against the null hypothesis of there being no statistically important
difference between classes. The procedure involves calculation of the F-statistics given by

F = Mseffect/MSerror (3>

where MSefect and MSe,.or estimate the between- and within-class variances respectively.
The F' statistics promotes features where data vectors belonging to different classes form
compact and well separated clusters.

3.8. Sequential floating forward selection

Basically, strategies of constructing candidate feature subsets in the wrapper approach
fall into four categories: optimal (exhaustive or branch-and-bound), sequential, random-
ized and hybrid, the latter being a mixture of sequential and randomized techniques.
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1. t=0;
2. repeat
//forward selection

3. d=argmax J(E,U{d});
JEAt

4. B =EU{0};
A = A\ {0}

5. t=t+1;
// backward selection

~

6. ¢= ar%eniax J(E: N\ {¢}):

7. if J(E\{€}) > J(Ei 1) then
8. B =8\ {€);

A =AU {5}7
9. t=t—1;
10. goto step 6.
11. endif

12. untilt =d+r

Figure 5: Pseudo-code of the SFFS algorithm

Genetic and hybrid genetic algorithms or simulated annealing [28] though being robust
to local minima of the objective function (classification accuracy) suffer from relatively
slow convergence rate, especially near optimum. Exhaustive search is computationally
intractable for very high feature space dimension and time-consuming classification algo-
rithm, while branch-and-bound strategies require monotonicity of the objective function.
Thus, sequential search methods constitute viable alternative providing trade-off between
flexibility, compute time and optimality of the final solution.

Among various sequential strategies described in the literature, the sequential floating
forward search (SFFS) gained dominance in the field. It proves particularly effective in
tackling with the nesting problem [26, 40]. The SFF'S algorithm is outlined in Fig 5.

On initialization all features are gathered in insignificant feature subset A whereas rel-
evant subset = = (). The search mechanism consists of consecutive forward and backward
selection steps. In the forward direction, relevant features are added to E, one at a time.
The goal of this step is to identify next feature which either ensures best improvement or
lowest degradation of J. On the other hand, feature removal (backward step) is executed
only if it improves optimality criterion. The algorithm creates a collection of subsets
1 <t < d, each containing the best subset of size t. Note that the search continues after
assumed target dimensionality d is reached. The number of extra steps is controlled by
the parameter r which ensures that the truly best feature subset of size d is found. Note
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also, that the algorithm formulated as in Fig. 5 assumes, that the objective function J is
to be maximized which takes place in the case of classification accuracy. If J corresponds
to classification error, the equations in step 3, 6 and 7 must be altered accordingly.

3.4. Vector supported convexr hull method

As we explained earlier we assume specific distributions of vectors. Feature vectors
related with a particular abnormality form a compact cluster surrounded by scattered
feature vectors representing normal tissue, intestine content or other artifact structures.
Such distributions cannot be separated by means of linear discriminant analysis. On
the other hand, application of nonlinear classifiers such as SVMs turns out to be time
consuming. Therefore, there is a need for efficient algorithm which defines nonlinear clas-
sification rules and quickly assess separability criterion applicable for selection of vector
subspace. To solve the problem we developed the Vector Supported Convex Hull (VSCH)
algorithm. The overall concept of VSCH was initially proposed in [21], where only some
preliminary results were presented. Below we introduce this method in its mature form
and after substantial refinenment. Also, we have designed its efficient implementation in
the C programming language, so that its credible and thorough validation has become
plausible.
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Figure 6: Ilustration of convex hull method in 2D space (k=2)

The VSCH is essentially a discriminant analysis method of supervised learning for
reduction of vectors dimensionality and for data classification. Since only a limited number
of features carry relevant information needed for discrimination and other descriptors are
redundant for classification, the VSCH aims at finding a subset of descriptors, which
present best discrimination ability to separate two classes of vectors. Moreover, the VSCH
produces a classification rule to separate the two classes.

The input data consist of two sets (classes), of feature vectors in an n-dimensional
space (Fig. 6a). The first class represents images of a selected pathology and the second
one represents the images without pathology. We search for a k-dimensional subspace
(k < n) such that vectors of the set number one form a cluster surrounded by vectors of
the set number two. For each subspace the convex hull on the vectors belonging to the
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first class is computed. Then we count vectors of the second class enclosed by the convex
hull (Fig. 6b). A subspace with the smallest number @); of such vectors is selected.

If there is more than one subspace with the same smallest ()1 then we use the second
principle of selection. The convex hull is maximally scaled up around its centroid, not
to include any additional vectors of the second class (Fig. 6¢). The scaling factor a is
computed — we select a subspace with the factor of highest value.

Based on the above criteria, the single value index @) of class separability can be
defined. The index is a sum of (); and a reciprocal of a, i.e.

Q=0 +a" (4)

The first component is an integer value, whereas a second one is a fraction (a is always
grater then on, thus, its reciprocal is positive and less then 1). Based on the @) index, the
subspace with the smallest value of the index is selected.

The VSCH algorithm searches through all the 1D, 2D up to ND feature subsets, where
N is a parameter to choose. After a subset is selected, the algorithm can also produce
rules for classification. The rules are given by a set of inequalities defining the convex
hull which was scaled up by a square root of a. In many medical applications it is crucial
not to overlook any indications of pathology. Such indications usually are later verified
by medical experts and may be rejected. If they are mistakenly rejected by an automatic
method, an expert may never notice the pathology. Therefore, it is important to find
methods characterized by a minimal false negative error. The VSCH method reveals a
property which is particularly useful in biomedical image analysis. The method produces
classification rules, such that for the training set vectors, the false negative error is equal
to zero.

There are several algorithms for convex hull computation. In our implementation we
adapt a ghull library implementation [41].

4. Experiments

In order to confirm utility of the above discussed feature computation and selection
methods for analysis of the wireless endoscope images, two kinds of experiments were
carried out. The goal of the first kind of experiments was to evaluate the discrimi-
native power of texture and color features generated by MaZda software as well as to
compare VSCH feature selection and classification algorithm against SVM/SFFS and
SVM/ANOVA methods. The second experimental framework demonstrates feasibility of
endoscopic image segmentation by means of color and texture feature maps. In these
analyses we also proceed with feature computation and feature selection stages. However,
the selected features provide here a means of image segmentation rather than pathology
detection. The segmentation is a result of individual pixels classification utilizing either
VSCH or SVM classifiers. The details of both experiments, the data, the way of feature
computation, lists of the selected features, classification and segmentation results, are
given in the following subsections.
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4.1. Material

In the experimental part of this study we analyzed a set of over 50 capsule endoscopy
videos. The videos were supplemented with medical reports, including image lists of gas-
trointestinal tract specific landmarks and pathological abnormalities — so called findings.

Our efforts were focused on three types of anomalies occurring in the gastrointestinal
tract: bleedings, focal ulcers and extensive fibrotic ulcers. These anomalies are charac-
teristic to various diseases, including Crohn’s-Lesniewski disease — often lethal, chronic,
nonspecific inflammation of the small intestine. The etiology of the disease is not known
and the effects of treatment are dependent on its early diagnosis. Therefore, the develop-
ment of techniques for detecting these lesions is important and reasonable.

In the 50 videos used in the experiment, there were found: 5 sequences with 38 example
images of bleeding, 4 with 36 images of focal ulcers and 3 containing 39 images showing
excessive fibrotic ulcerations. Moreover, for comparison, more than 500 diverse images
without visible lesions were selected. Gastroenterologists participating in the experiment
confirmed the presence of specific lesions or lack of such changes in the selected images,
and furthermore, the abnormal regions were outlined.

It should be noted, images of the reference class, without any visible abnormality,
presented not only the walls of gastrointestinal system, but also contents of intestines
such as partially digested food, bubbles, froth and other artifacts obscuring the view.
Thus, the class comprised a mixture of images varied in terms of color, texture and shape
of objects presented within.

4.2. Abnormality detection

The first experiment was designed to evaluate the discriminative power of the texture
and color features in detection of gastrointestinal tract pathologies. In this experiment
every feature vector characterizing local image properties was computed within circular
region of interest of 25 pixel radius. In the case of bleedings and excessive ulcerations, the
regions of interest were semi-randomly placed within the regions indicated by gastroen-
terologists as abnormal. In contrast to bleedings and excessive ulcers, areas of focal ulcers
are small, usually smaller or comparable in size with area of the circular region of interest.
Therefore, in these cases the circular region of interest was placed to comprise abnormal
area or to comprise at least a substantial portion of it. In addition, the feature vectors
were computed within images of the reference class — with no visible abnormalities. In
every image of reference class 48 regions of interest were placed evenly within the field of
view, and for every such region the feature vector was computed.

The number of calculated vectors exceeded number of 230 per each pathology. There
were also 24000 vectors of the reference class. For the need of discriminant analysis,
four sets of labeled vectors were assembled. The set of the reference class contained 1024
randomly selected vectors, the three sets of vectors representing abnormal tissue contained
128 vectors each. Then, three training sets were assembled, each for separate pathology
type, by combining reference class vectors with the appropriate abnormality samples. The
proportion of class counts in the training sets is adjusted such that cardinality of reference
class surpasses the number of lesion class vectors in relation 8:1. In a real full-length video
the ratio of normal to abnormal images is several orders larger. However, if this ratio were
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Table 1: Sensitivity and specificity ratios obtained for the bleeding class

Exploration | Evaluation | Feature space dimension
strategy ratio 2D | 3D | 4D | 5D
Training set results
SVM/ Sensitivity | 0.959 | 0.962 | 0.977 | 0.977
SFES Specificity | 0.986 | 0.997 | 0.997 | 0.998
SVM/ Sensitivity | 0.970 | 0.970 | 0.970 | 0.970
ANOVA Specificity | 0.997 | 0.999 | 0.999 | 1.000
VSCH Sensitivity | 1.000 | 1.000 | 1.000 | 1.000

Specificity | 1.000 | 1.000 | 1.000 | 1.000
Testing set results
SVM/ Sensitivity | 0.867 | 0.980 | 0.990 | 0.990
SFFS Specificity | 1.000 | 1.000 | 1.000 | 1.000
SVM/ Sensitivity | 0.878 | 0.970 | 0.970 | 0.970
ANOVA Specificity | 1.000 | 1.000 | 1.000 | 1.000
VSCH Sensitivity | 1.000 | 0.980 | 0.880 | 0.880
Specificity | 0.990 | 1.000 | 1.000 | 1.000

to be preserved in a training set, classifiers, such as SVM, would suffer from the problem
of unbalanced class sizes [42]. The errors made on less frequent class would exert only a
neglible impact on overall classification quality, misleading training procedure. Thus we
purposely enlarged the percantage of lesion category vectors in training sets to give the
SVM algorithm a chance to properly construct classification rule. On the other hand, the
portion of reference vectors still remains remarkably larger in order to — at least to some
extent — simulate real conditions.

Validation of the discriminant analysis was performed using separate testing sets,
composed of 100 randomly selected vectors of each class. The sampling procedure was
accomplished in a way ensuring mutual exclusiveness of training and testing sets although
for each pathology both kinds of sets could have contained vectors derived from the same
WCE sequence. However, at the end of this section we describe an experiment, where new
sequences are used for validation and effectiveness of the proposed approach is verified
using images not included in classifiers training stage.

The training data sets were examined by the feature selection and classification algo-
rithms, VSCH, SVM/SFFS and SVM/ANOVA. In VSCH, to extract 2D or 3D feature
subspace, the feature space exploration was performed using exhaustive search. The ex-
traction of 4D and 5D subspace was performed on a space of preselected, top-ranked
attributes, which demonstrated the best discriminative power in preceding explorations.
The SFFS selection was launched with target dimensionality set to 5 (value of the ripple
parameter equaled 2) and thus it sequentially produced best 2D, 3D, 4D and 5D feature
subspaces. In the case of ANOVA, all features were ordered relative to their respective
F-statics measure and then the desired number of attributes from the top of the list were
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Table 2: Sensitivity and specificity ratios for the focal ulceration class

Exploration | Evaluation | Feature space dimension
strategy ratio 2D | 3D | 4D | 5D
Training set results
SVM/ Sensitivity | 0.773 | 0.826 | 0.826 | 0.833
SFES Specificity | 0.984 | 0.991 | 0.996 | 0.997
SVM/ Sensitivity | 0.000 | 0.561 | 0.652 | 0.674
ANOVA Specificity | 1.000 | 0.965 | 0.975 | 0.981
VSCH Sensitivity | 1.000 | 1.000 | 1.000 | 1.000

Specificity | 0.889 | 0.959 | 0.989 | 0.999
Testing set results
SVM/ Sensitivity | 0.794 | 0.804 | 0.794 | 0.794
SFFS Specificity | 0.963 | 0.963 | 0.963 | 0.953
SVM/ Sensitivity | 0.000 | 0.454 | 0.557 | 0.557
ANOVA Specificity | 1.000 | 0.963 | 0.972 | 0.972
VSCH Sensitivity | 0.970 | 0.830 | 0.720 | 0.670
Specificity | 0.660 | 0.940 | 0.970 | 0.980

taken for further analysis.

Relevance of a feature subsets obtained by one of the three selection methods was
assessed by the accuracy of a corresponding classifier. Note that in the case of SVM
algorithm several trails with different values of the gamma coefficient (cf. Eq. (2)) were
executed in order to achieve best attainable results for a particular data set. The classifica-
tion specificity and sensitivity indicators were computed for the corresponding subspaces
of training and testing sets, they are presented in Tables 1-3.

Firstly, it is evident, that the selected texture- and color-based features enable ac-
curate discrimination between abnormal and reference vectors. However, the accuracy
level varies depending on the feature selection and classification method and also on the
pathology type. The best recognition rates for all exploration approaches are attained for
the bleeding class. In the case of training data sets, all methods reach the level of min-
imum 95% for sensitivity and specificity ratios and all tested feature space cardinalities.
In particular, the VSCH algorithm exhibits outstanding performance with 100% scores on
the both evaluation criteria. Comparing results achieved in the training stage by ANOVA
and SFFS selection methods suggests primacy of the former strategy. However, the test-
ing part reveals opposite tendency. Clearly, the SFFS procedure identifies features which
allow construction of a classifier possessing high generalization properties. Moreover, the
sensitivity ratios gained for the test sets by the SVM/SFFS and SVM/ANOVA methods
are only slightly worse from the training results. On the contrary, performance of VSCH
remarkably degrades with the feature space dimension, falling below the acceptable level
of 90% for the 5D case. However, if all tested dimensionalities are taken into account, still
the VSCH methods outperforms the others, as it is the only method to correctly detect
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Table 3: Sensitivity and specificity ratios for the excessive ulceration class

Exploration | Evaluation | Feature space dimension
strategy ratio 2D | 3D | 4D | 5D
Training set results
SVM/ Sensitivity | 0.553 | 0.682 | 0.826 | 0.856
SFES Specificity | 0.991 | 0.994 | 0.992 | 0.996
SVM/ Sensitivity | 0.417 | 0.932 | 1.000 | 1.000
ANOVA Specificity | 0.995 | 1.000 | 1.000 | 1.000
VSCH Sensitivity | 1.000 | 1.000 | 1.000 | 1.000

Specificity | 0.933 | 0.989 | 0.999 | 1.000
Testing set results
SVM/ Sensitivity | 0.429 | 0.592 | 0.663 | 0.643
SFFS Specificity | 0.990 | 1.000 | 1.000 | 1.000
SVM/ Sensitivity | 0.286 | 0.020 | 0.000 | 0.000
ANOVA Specificity | 0.990 | 1.000 | 1.000 | 1.000
VSCH Sensitivity | 1.000 | 0.880 | 0.700 | 0.630
Specificity | 0.720 | 0.940 | 0.990 | 0.990

all true positive vectors for the 2D case.

This trend in sensitivity scores — observable also for the other two pathology classes —
can be explained by the way, in which the VSCH feature selection procedure is carried on.
After examining all possible 3D feature combinations, the attribute triplets are ranked
according to their corresponding @) factor value. Full search in 4D is restricted to the
top of that rank. Similarly, exploration in 5D is based on the results of 4D selection.
Thus, some of the potentially good 4D and 5D feature combinations are never tested and
consequently the SFFS selection method appears as a better option in this respect.

Analysis of the results obtained for focal and excessive ulceration classes confirms
supremacy of the VSCH method as it again lead in both cases to almost perfect sensitivity
ratios for the testing sets (97% and 100% respectively) in 2D. The scores achieved by
SVM/SFFS and SVM/ANOVA are far from satisfactory. In particular, classification
based on features identified by ANOVA completes with no true positive recognitions at
all. This unwelcome effect is directly caused by the structure of the training sets with
strong bias towards the reference class. As a result, the classifier error committed on the
pathology class has lower impact on the total error and in turn on the overall evaluation of
the feature subset. On the other hand, the proposed VSCH algorithm always constructs a
convex hull surrounding all true positive cases causing sensitivity ratio to be equal to 100%
for any input training set. This property of VSCH ensures its robustness to unbalanced
proportions between cardinalities of different-class vector collections so that no clinically
important WCE images are omitted during diagnosis.

Regarding specificity ratios, all methods achieve good results (at least 94% for the
testing sets) except for the VSCH in the case of ulcers and the 2D space. It is apparent
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Figure 7: Scatter plots of the bleeding (denoted as red '+’) and reference (green '0’) classes in the reduced
feature subsets as selected by VSCH algorithm: a) training, b) test data vectors

here, that good sensitivity was achieved at the cost of large number of false positive
recognitions. Moreover, it can be noted, that in general the preferable dimensionality
of target feature space is 3D, as it provides acceptable trade-off between specificity and
sensitivity scores for VSCH and SVM/SFFS methods. The latter algorithm performs
better in 4D in the case of ulcers, but the benefit from increasing dimension is only minor,
not equaling computational effort required by additional texture feature calculation.

It is also interesting to analyze scatter plots of data instances in feature subspaces
selected by different methods. Figures 7-9 depict the example plots obtained for the
bleeding class in 3D. It can be seen that for the ANOVA method feature vectors are lo-
cated mostly along one distinct direction. This distribiution, observed also for the other
two pathology classes, shows that ANOVA tends to select mutually correlated features
which are more expressive (in terms of incorporated data set variance) rather than dis-
criminative in meaning. On the other hand, SVM/SFFS and VSCH methods identify
features which convey more diversed information and hence allow for better, possibly
non-linear, separation of classes.

Another point of investigation is the ability of particular color spaces to emphasize
lesion structures in WCE images and thus facilitate their automatic recogntion. To answer
this question we performed additional series of experiments, where feature selection was
restricted to RGB, HSB and YUV spaces separately. Tables 4 and 5 present the obtained
sensitivity and specificity ratios for different number of dimensions, as well as lists of
channels of selected features. The presented results were calculated for two example
pathology classes — bleeding and excessive ulcerations — and using the VSCH method. For
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Figure 8: Scatter plots of the bleeding (denoted as red '+’) and reference (green 'o’) classes in the reduced
feature subsets as selected by ANOVA algorithm: a) training, b) test data vectors

Figure 9: Scatter plots of the bleeding (denoted as red '+’) and reference (green ’o’) classes in the reduced
feature subsets as selected by a-b) SVM/SFFS algorithm: a) training, b) test data vectors
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Table 4: Sensitivity and specificity ratios obtained in different color spaces for the bleeding class (testing

sets results)

Dimensionality | Color space | Sensitivity | Specificity | Selected color channels
RGB 0.965 0.979 G, R
2D YUV 0.965 0.954 Y,V
HSB 0.929 0.954 H, B
All 1.000 0.990 Q,U/Y
RGB 0.912 0.996 G, R, B
3D YUV 0.912 1.000 Y,V,U
HSB 0.859 1.000 H, B, B
All 0.980 1.000 | Q/Y, U/Y, 1/Y
RGB 0.912 1.000 R, G, B, G
4D YUV 0.877 1.000 Y,V, U U
HSB 0.859 1.000 B, H, B, B
All 0.880 1.000 H,V/Y, U/Y, V/Y
RGB 0.859 1.000 G, B, G, G, R
5D YUV 0.807 0.966 Y,V,U UV
HSB 0.877 1.000 B, B, H,S,S
All 0.880 1.000 H,U/Y,V/Y,U/Y,U/Y

convenience, these tables also recall the corresponding outcomes of experiments where all
color spaces were simultaneously taken into account (Tables 1 and 3 respectively).

It can be observed that different color spaces allow achieving various levels of classifi-
cation accuracy. In particular, the scores obtained for RGB channels are slightly better
than for HSB and YUYV spaces. It performs best for 2-dimensional cases for both tested
pathology classes ensuring relatively high specificity and sensitivity indicators. However,
the isolated color spaces — especially for higher dimensions — lead to more classification er-
rors if compared to color spaces mixture. Note that in the latter case, the selected features
comprise of descriptors dervied form various color models, potentially complementary to
one another. This supports the postulated approach which avoids prioritization of any
color model, leaving the choice of the best color channels to feature selection procedure.

Eventually, it must be noted that all the above described results were computed only
for randomly chosen sample of WCE video frames. However, it is necessary to assess the
proposed approach performance in relation to entire sequence, typically composed of over
50000 endoscopic images. For that purpose, we designed a computer program dedicated
to WCE video analysis whose goal is to detect frames suspected to include pathology
structures. We focused again on two lesion classes — bleedings and excessive ulcerations
whose automated identification — according to achieved experimental results — is mostly
reliable and feasible in practice. During program operation, a frame is first devided into
48 circular regions of interest (laid out as shown in Fig. 2) and each ROI is submitted
to texture analysis routine. Then an image is denoted as a suspected one, if any of the
implemented classifiers (trained with the use of 3D VSCH method) marks at least one
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Table 5: Sensitivity and specificity ratios obtained in different color spaces for the excessive ulceration
class (testing sets results)

Dimensionality | Color space | Sensitivity | Specificity | Selected color channels

RGB 0.965 0.730 G, G

2D YUV 0.965 0.663 Y,V
HSB 0.929 0.630 B, S
All 1.000 0.720 Z, H
RGB 0.830 0.966 G, B,B

3D YUV 0.877 0.912 Y, V.,V
HSB 0.859 0.966 B,H, H
All 0.880 0.940 G, U/Y,U/Y
RGB 0.651 0.990 B, B, G, G

4D YUV 0.630 0.966 V, V.Y, Y
HSB 0.592 0.966 B, H, H, H
All 0.700 0.990 G, U/Y,U/Y, G
RGB 0.592 0.990 B, B, G, G, G

5D YUV 0.553 0.996 Y, Y, Y, U U
HSB 0.553 0.993 B, B, H, H, S
All 0.630 0.990 G, LY, V/Y, Y

ROI as positive, i.e. including pathology.

Using the designed program, we examined two new WCE data sets, whose frames were
not employed for classifiers training stage. One of the investigated sequences contained
a series of images with visible ulcerations, however differing from previously analyzed
excessive structures. Although this new type of lesion also occupies large areas of intes-
tine walls, it additionally contains small reddish spots resambling bleedings or petechiae
(Fig. 10). In the second analyzed sequence, medical experts did not identify any pathology
structure and thus it can be assumed normal.

Since in the analyzed movies there were no pathology classes exactly matching those
considered in the training phase, overall classification performance was evaluated disre-
garding the actual lesion category. Classification result was assumed correct if an existing
pathology structure was detected by any of the two implemented classifiers. Thus, the
analysis of the first sequence containing new type of ulceration resulted in sensitivity and
specificity ratios equal to 0.72 and 0.88 respectively. These rates are lower than the scores
given in Tables 1 and 3, however the pattern of new pathology is significantly different
both from bleeding and excessive ulceration. If this factor is taken into account, the de-
signed system can still be seen as preserving practical value even if dedicated pathology
structures do not appear in a given WCE examination. This conclusion is further sup-
ported by the results of the second movie analysis. In this case, in the sequence of 57061
frames, only 17 (0.03%) cases of excessive ulcerations and 5127 (9.0%) of bleedings were
found. These numbers reduce to 0 and 1429 (3.5%) false positive errors if the analysis of
entire video is limited to 40785 frames embracing duodenum and small intestine, i.e. the
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Figure 10: Example of large-area ulcer with red bleeding-like structures

fragments usually examined in capsule endoscpy.

4.8. Image segmentation

At the first glance, calculation of maps of the features selected in the previous section
and then, using these maps as input to the segmentation procedure seems to be the right
solution to the problem. Unfortunately, it is not. The problem is, the feature vectors of
the reference class were computed only within images that do not contain lesions. As a
result, the selected features correctly discriminate images belonging to different groups,
but they are not really useful to distinguish between regions of normal and abnormal state
within the same image.

To select features useful for image segmentation, the feature selection process should
also take into account vectors computed for normal state regions appearing within images
showing abnormalities. Therefore, in order to select features capable of image segmenta-
tion, the set of reference vectors was augmented with additional entities computed in such
the regions. Moreover, the original feature space was extended on attributes calculated
in only direct proximity of a given pixel. Thus, apart from features determined for circu-
lar ROI of 25-pixel-long radius, all data vectors contained components corresponding to
3 x 3-pixel squares centered at the point of interest. These additional attributes ensure
even more local characteristics of pixels giving opportunity for fine-grained segment de-
lineation. The selection of features for image segmentation was performed the same way
as described in the previous section. Three different methods (VSCH, SVM/SFFS and
ANOVA) were applied for selection, which yielded three self-sufficient groups of features
and thus three different classifiers.

Image segmentation involves qualification of image pixels into different classes. Pixels
classified as belonging to a lesion class should designate a region that coincides with the
region of the actual lesion. Other pixels should fall into areas without visible pathological
changes. Thus, to allow for classification of individual pixels, using the selected features,
the values of these features must be computed around each individual pixel to form feature
maps.

For the purpose of the experiment 16 images of bleeding, 16 images of focal ulcers, 16
images of excessive fibrotic ulcers and 64 images of reference class were randomly chosen.
The images were segmented by means of the three classifiers. To validate the results, the
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Table 6: Quantitative evaluation of the segmentation results

Algorithm | Evaluation | Bleeding | Focal | Excessive
ratio ulcer ulcer
Recall 0.693 0.443 0.303
SVM/ Precision 0.448 0.287 0.869
ANOVA Jaccard index 0.377 0.194 0.285
Recall 0.869 0.769 0.580
SVM/ Precision 0.495 0.305 0.918
SFFS Jaccard 0.462 0.287 0.546
Recall 0.875 0.932 0.917
VSCH Precision 0.732 0.696 0.669
Jaccard index 0.487 0.235 0.621

obtained regions of suspected lesions were compared with the regions depicted manually
by a gastroenterologist. For the need of quantitative validation, classification precision
and recall ratios as well as Jaccard index were computed for each pair of regions being

compared, as defined below:
ANM

Precision —
recision T (5)
ANM
Il =
Reca W (6)
ANM

Jaccard index = TUM (7)

where A and M denote areas of automatically and manually delineated segments.

The average values of the three measures are listed in Table 6. Example images of
lesions and results of their segmentation are shown in Fig. 11. As it can be seen, precise
delineation of pathology regions is a challenging task, which is particularly apparent in
the case of small structures such as focal ulcers. The highest scores on Jaccard coefficient
— which estimates the accuracy of fit between manually and automatically found regions
— do not exceed the value of 0.62 (VSCH method, excessive ulcerations), while the lowest
results fall into the range 0.2-0.3 (focal ulcers). On the other hand, the recall ratios
are relatively high, especially for the proposed VSCH approach. These results ensure,
that approximately 90% of the region of interest area will be properly recognized. The
SVM/SFFS and SVM/ANOVA methods perform worse in this respect, although the prior
strategy gives similar recall values for the bleeding class.

Comparing the results achieved on the precision ratio, it emerges that none of the
tested methods gains supremacy over the others. SVM/ANOVA and SVM/SFFS occurred
to be the best in the case of excessive ulcerations reaching the levels of 0.87 and 0.92
respectively. However, both strategies classify remarkably large amounts of pixels into
pathology segment in the case of bleedings (mean precision values close to 0.45) and focal
ulcerations (around 0.3). On the other hand, VSCH method exhibit stable behavior and
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irrespective of the abnormality class gives precision value approximately equal to 0.7. This
score is better than the results obtained by the other two methods for ulcers, however still
unsatisfactory. This phenomenon — similar to effects observed in the detection experiment
— is caused by the intrinsic property of the VSCH algorithm, which aims at minimizing
false negative recognitions even if it increases false positive errors.

5. Summary

The obtained experimental results show great potential of the employed methods in
detection and segmentation of anomolies in the WCE images. Especially the SVM /SFFS
strategy and the introduced VSCH algorithm reach high accuracy levels, although the
latter outperforms the other in all three tested gastrointestinal pathology classes. The
best detection efficiency has been achieved for the bleeding category, where VSCH scores
over 98% in sensitivity and specificity ratios. Similarily, VSCH occured most accurate in
identifying segments representing various abnormality structures.

It is also apparent that usage of non-linear classification rules and extensive feature
selection based on the wrapper model is necessary to enable reliable diagnosis. The worst
results for any abnormality class are obtained for the SVM/ANOVA method. It is caused
by the intrinsic linearity of the ANOVA test and by the fact, that a feature relevance is
assessed in isolation from the other attributes. Therefore, ANOVA tends to select features
which are correlated with each other and whose common discriminative power is low in
comparison with the subsets selected by the wrapper methods.

It can be concluded that exploratory analysis based on texture and color image infor-
mation and using combined feature selection and classification algorithms helps improving
WCE interpretation, making it reliable and cost-effective. Eventually, due to automation
of the employed image processing procedures, the diagnosis will also lead to reproducible
and more objective results.

On the other hand, if we take into account the results obtained in the analysis of the
entire video sequences, over one thousand of false positives is not acceptable in the clinical
application as it would undermine the clinician’s trust in the system. Therefore, it is nec-
essary to improve the detection algorithm, with the aim of increasing specificity measure.
For this reason, we plan to carry out further work on integrating information on color and
texture with shape parameters and movement characteristics. Such an approach stems
from the observation that many structures are properly recognized by gastroenterologists
only if they are observed in motion, i.e. in the range of several frames. This would enable
distinction between objects of specific shape, whose position alters independently from the
intestine wall and those which shift coherently with the background. In the former case,
it can be suspected, that the observed object is an artifact, such as some food residue,
while in the latter case it is more likely to be a tissue malformation. Thus, it can be
presumed that motion and shape analysis of WCE images will reduce the number of false
positive detections.

The described procedure of image color and texture feature computation as well as
VSCH feature selection algorithm is implemented in MaZda software [35]. The algorithm
for detection of bleedings and ulcers, being the result of presented studies is implemented
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Figure 11: Example images of a) bledding, b) focal, ¢) exccesive ulcerations and their corresponding
segmentation results obtained by d-f) SVM/ANOVA, g-i) SVM/SFFS, and j-1) VSCH algorihtms. Yellow
areas denote common regions found by manual delineation (green outside) and automatic segmentation
methods (red outside).
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in WCE Player program. Both programs are available for download from http://www.
eletel.p.lodz.pl/programy/mazda/ and http://wce.naviton.pl/.
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