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Abstract

This paper presents an algorithm for analyzing barley kernel images to evaluate cereal grain quality and
perform grain classification. The input data comprised digital images of kernels obtained from an optical scanner.
The algorithm identified individual kernels’ smooth and wrinkled regions, described their orientation relative to
the axis of symmetry, crease visibility and germ location. We were also able to determine the size of the wrinkled
and smooth areas on a grain’s surface, which allowed automatic grain classification and kernel quality assessment.
The proposed algorithm was tested using barley grain images, and validated by comparison with the evaluation
results of a professional assessor. The validation of the algorithm confirmed that it is efficient and robust allowing
accurate description of over 93% of kernel samples in comparison with the expert.

Highlights

An algorithm to analyze barley kernel images was proposed.
The algorithm identified the wrinkled and smooth regions of individual kernels with a mean accuracy of 99%.
The algorithm eliminated the need for human involvement in the assessment process.

Keywords

Digital image analysis; Automated kernel grading; Cereal grain classification

1. Introduction

The process of manufacturing products of superior quality requires raw materials that are of equally high
standard. The suitability of raw materials for industrial use is determined by their physical, chemical and sensory
attributes. In plant breeding, the quality of seeds and parent material has a significant bearing on new varieties and
breeding lines. Research centers around the world are attempting to develop quick and effective methods for
evaluating the quality of raw materials, based on the assessment of selected attributes for specific applications in
production and breeding (Brosnan and Sun, 2004, Mendoza et al., 2007 and Reum and Zhang, 2007).



The processing suitability of agricultural products is highly influenced by variable growing conditions
and environmental factors. In the food processing industry, the quality grade of raw materials is classified (within
the species) based on information about a given variety. This, however, has drawbacks. When affected by different
environmental conditions, for example, the same genotype may produce different phenotypic responses (Jezowski,
1981 and Jezowski et al., 1993). Decisions on raw materials’ processing suitability made solely on based on
genotype features can be misleading (Rybinski and Szot, 2006). Several methods for analyzing grain varieties are
available in practice, including immunological methods, DNA analyses, HPLC, protein electrophoresis and
isoenzyme analyses (ISTA, 2012). Most of those techniques are expensive, time-consuming, and only available to
specialist laboratories. Alternative methods for evaluating the quality and varietal uniformity of cereal grains are,
therefore, needed. Computer image analyses, which offer such an alternative, have already been carried out for
more than 10 years (Zayas and Steele, 1996, Neuman et al., 1987, Neuman et al., 1989a, Neuman et al., 1989b,
Majumdar and Jayas, 1999, Majumdar and Jayas, 2000a, Majumdar and Jayas, 2000b, Majumdar and Jayas,
2000c and Majumdar and Jayas, 2000d). Jayas et al., 2000, Visen et al., 2001, Visen et al., 2002, Paliwal et al.,
2001, Paliwal et al., 2003a and Paliwal et al., 2003b, and Zapotoczny et al. (2005). Shouche et al. (2001) used a
flatbed scanner to discriminate fifteen Indian wheat varieties. From a group of 45 indices of geometric dimensions
and shapes, they identified 5 indices that support varietal discrimination. Utku (2000) used a CCD camera to
develop a system that distinguishes 31 wheat varieties. Various attempts have been made to identify grain classes
and varieties based on differences in the geometric properties of kernels (Zayas et al., 1986, Shouche et al., 2001
and Brosnan and Da-Wen, 2002). Studies showed that vision systems (MVS) could successfully be used for
identification of pests and the level of fungal infections in grains (Ruan et al., 2001 and Ridgway et al., 2002).
MVS can also be used to analyze variations in the color of wheat grains caused by changes in moisture, fungal
infections and overheating (Luo et al., 1999 and Ruan et al., 2001). Dalen (2004) used flatbed scanner images to
evaluate the extent of damage to rice grains with 99% accuracy within a relatively short period of time (about 3
min). Strumito et al. (1999) developed a computer-aided system for evaluating the sowing suitability of seeds
using X-ray images. In our previous study (Zapotoczny et al., 2008, Markowski et al., 2006, Zapotoczny, 2011a
and Zapotoczny, 2011b), we relied on computer-assisted image analysis to discriminate between cereal grain
varieties. Different varieties of wheat and malting barley grains were classified with an accuracy of nearly 100%.
However our statistical models based on variables obtained from grains harvested in a given year failed to provide
reliable results in successive years. Image analysis also proved to be an unsatisfactory method for evaluating grain
quality (Zapotoczny, 2011a). The correlation coefficients between color, surface texture and geometric attributes
of grains and the technological properties of the resulting flour were unsatisfactory (Zapotoczny, 2008). Previous
studies focused on the evaluation of color, geometric and texture properties of individual kernels or bulk grain
images. To our knowledge, there have been no attempts to measure the color, geometrical and textural features of
parts of grain kernels such as dorsal (back) and ventral (front) sides of kernels, the crease and the germ. With
regard to malting barley varieties, the wrinkled and the smooth sections of the kernel should be analyzed
separately. The size and the attributes of the wrinkled surface are determined by varietal characteristics and the
accumulation of reserve compounds in kernels. In this respect, this study attempted to develop an algorithm to
automatically discriminate kernels positioned on the ventral or dorsal side and to identify various textured areas
on the analyzed side. As a result, regions were identified, and color component (RGB, XYZ, L * ab), texture and
shape descriptors of kernel surfaces were determined (Szczypinski et al., 2007 and Szczypinski et al., 2009). Our
approach improved the efficiency of varietal discrimination by analyzing the correlations between variables
obtained from the image analysis and the technological quality properties of grain (moisture content, germination
energy, malting, total protein, viscosity, extraactivity of malt). The proposed system for evaluating the quality and
varietal homogeneity of cereal grains could be dedicated to flour milling and grain processing companies.

This article proposes a computer-generated algorithm for preliminary analysis of kernel images. The
algorithm will identify the imaged kernels, it will determine their orientation relative to their axis of symmetry, the
location of the germ and the visibility of the crease (dorsal or ventral side of the kernel). The proposed algorithm
will support image segmentation by identifying the areas of individual grains and the size of smooth and wrinkled
areas on the grain’s surface.



2. Materials and methods

2.1. Image analysis

Images of barley kernels (Fig. 1a) were obtained using an Epson 4490 flatbed scanner interfaced with a
computer. The scanner uses a Charge Coupled Device (CCD) sensor array with the light sources located on its
side, which allows to obtain fairly good focus on small three-dimensional objects such as kernels. The downside
of this method of image acquisition is the uneven surface illumination of the kernels. Images were captured in
color at a resolution of 400 DPI, 24 bits per pixel and stored in an uncompressed format not to introduce any
additional artifacts. Kernels were positioned on the surface of the scanner in non-touching fashion, with a mean
distance of at least 3 mm resulting in grain distance of at least 50% of the average grain’s width, which allows to
fit several hundred kernels in one image. For the acquisition the scanner’s cover was removed and the scanner was
placed in a compartment inlaid with black velvet. This resulted in images, in which the kernels are relatively
bright compared with the dark background, allowing the application of simple and efficient computer algorithms
to identify the kernel regions.

Kernels were placed by hand, they were roughly aligned with no predefined locations, thus their
coordinates in the image are unspecified. Also, their orientations were not imposed, and thus some of them are
visible from the dorsal side — the crease is not visible, whilst others show the ventral side exposing the crease. The
kernel orientation with respect to the germ—brush direction (anteroposterior axis) was not predetermined, yet most
of the kernels were aligned perpendicular to the scanner’s image sensors array. Due to this fact and the already
mentioned location of the light sources, the crease is noticeable as a darker line near the main axis of the kernels
and the wrinkled region is visible as a texture comprising brighter and darker patches.

(a) (b)

Fig. 1. Example fragment of (a) the input image and (b) its histogram.

Based on the image properties we developed an image processing algorithm, which involves three key
procedures. The first one is image segmentation and identification of individual kernels. The second one
determines each kernel’s orientation with respect to the dorsoventral and the anteroposterior axes. Finally, the
third procedure aims at finding the wrinkled area of the kernel, since one of our goals is to verify whether the
characteristics of the wrinkled region may be used for classification of varieties or assessing the dryness of
kernels.



2.2. Segmentation and identification

The first step of the algorithm involves image segmentation or binarization (Gonzalez and Woods, 2006,
Jéahne and Haussecker, 2000 and Otsu, 1979), which splits the image pixels into two subsets: those that are a part
of the background and those belonging to the kernel regions. The image histogram, which represents the number
of pixels having the same brightness as a function of the brightness, is bimodal in the case of images under
consideration (Fig. 1b). Therefore it shows two maxima, one related to the dark background and the other related
to the brighter kernel regions, with a minimum in between. In this case the image segmentation is feasible by
applying image grayscale thresholding — the pixels with a gray-level below that of the minimum fall into the
background, while the rest are categorized as belonging to the kernels. In the binary image (Fig. 2a) positive
values (white) represent the grain regions and zero values (black) represent the background. However, the
contours of the kernels in the binary image are not always smooth. Moreover, the kernel areas are not always
uniformly connected and some of them contain holes. What’s more, there are some small crumb areas which may
be incorrectly identified as kernels. To correct these discrepancies, we applied a procedure that involves the
following three steps: (i) morphological opening with a circular structuring element of the radius equal to seven
pixels; (ii) morphological closing with the same structuring element; and (iii) selection of regions based on their
corresponding areas. The opening removes small-sized peninsula-shaped remains located near the kernel contours,
while the closing removes any gulf-shaped cavities and open spaces. In addition, we estimated the mean area of
the kernel regions in the images. Our procedure assumes that kernel areas should fall within the range of 50% and
150% of the mean. Following this assumption, regions with areas that are excessively small or excessively large
are removed during the selection process (Fig. 2b), preventing the identification of small crumbs or multiple
touching grains as individual kernels.

(a) (b)

Fig. 2. The result of the segmentation (a) after the image gray-scale thresholding and (b) followed by morphological
closing and opening.

2.3. Orientation solving

As already mentioned, there are two aspects of orientation analysis, determination of orientation with
respect to the anteroposterior and the dorsoventral axes. Therefore, our approach involves two steps of image
analysis, the first one aims at localization of the longitudinal axis of symmetry and the second one establishes the
presence of the crease.



To find the longitudinal axis of symmetry, which determines the germ-brush direction of each grain, all
regions identified as kernels are analyzed one by one. In our approach, every region is approximated by an ellipse
in such a way that the mean square distance between the region’s contour and the ellipse is minimized (Hornberg,
2006 and Gander et al., 1994). It is assumed that every analyzed grain is quasi-symmetric and thus, the longer
diameter of the ellipse aligns with the germ—brush line (Fig. 3). Since kernels are usually wider on the side of the
germ and narrower on the other side, the average width of the region is measured independently on both sides of
the kernel to determine the germ side. The sides are delimited by the shorter diameter of the ellipse and the width
is measured in the direction parallel to that diameter. The higher value of the average width determines the germ
side.

Fig. 4. Determination of the kernel’s visible side: the dorsal (at the top row) and the ventral dorsal (at the bottom row).



At this stage, the kernels in the image are localized, their contours and areas are calculated, and the
orientation of the germ-brush direction is known. In the next step every region, examined individually, is
transformed onto a new image in such a way that the center of gravity of the grain becomes the center of the new
image, the germ-brush direction is oriented vertically and the germ is positioned at the bottom. The new image
size and transformation are computed based on the ellipse size and the orientation of its larger diameter. The
transformed image’s brightness function is interpolated by means of bilinear interpolation. The new image is used
for the purpose of crease detection and later to find the wrinkled area.

The crease, if the ventral side of the kernel is visible, forms a dark elongated area stretching across the
mid-line of the grain (Fig. 4). To determine the presence of that area we again use the image gray-level
thresholding. In this case only the small rectangular area of the image is examined, the height of which is equal to
the length of the larger diameter of the ellipse, the width equal to 1/4 of the ellipse width and its location being the
central part of the kernel transformed image. We found that in most cases the crease of barley kernel resides in
such a rectangular area and thus it is reasonable to limit the crease search to this region only. The threshold level
used for the image segmentation is set individually for each kernel as the average gray-level within the rectangular
area. After the segmentation, the lengths of any segments darker then the threshold value are measured. If any
length is higher than half of the grain’s length, the kernel is labeled as one with the ventral side visible. Otherwise,
the kernel is labeled as visible from the dorsal side.

2.4. Wrinkled region detection

Wrinkled regions of the barley kernels are distinguished by a texture of brighter and darker patches.
Therefore, to detect such regions automatically we use techniques of image texture analysis. Textures are defined
as visualizations of repeated patterns that are perceived by humans as uniform and homogeneous in appearance.
Despite those perceptions, textures are usually not uniform in terms of image gray-levels. Therefore, segmentation
of textured images, performed to determine texture diversity, is not feasible with gray-level thresholding. To
overcome this problem, texture descriptors (features) are usually computed. Descriptors are numerical values
which quantitatively characterize specific texture properties, such as roughness, directivity, randomness,
smoothness or granulation. If two textures differ with respect to a given descriptor, that descriptor can be applied
in texture discrimination and for image segmentation. In our approach, the descriptor was computed at every
image location and its value was thresholded to segment the image into areas corresponding to different textures.
Finding a particular feature capable to reliably discriminate the textures of interest (the wrinkled and smooth
regions of kernels) was one of goals of our study.

Large LRE
value

Small LRE
value

Fig. 5. Mapping the LRE moments.



To accomplish this task the MaZda software (Szczypinski et al., 2007, Szczypinski et al., 2009,
Szczypinski et al., 2011, Klepaczko et al., 2010 and Thybo et al., 2004) was applied to find the texture descriptor
capable of correct discrimination of the two areas. The software can compute up to several hundred various
texture descriptors and then it estimates their discriminative strength. We found the Long Runs Emphasis (LRE)
(Haralick, 2005) moment of the run-length matrix (RLM) computed for vertical runs proved to be most effective
in differentiating the areas of interest. The RLM holds counts of pixel runs with the specified gray-scale level and
length (Fig. 5). It can be computed for a chosen direction of pixel runs, such as horizontal or vertical. The LRE
moment’s value is higher if many long runs of pixels have similar gray-levels. Otherwise its value is low. Smooth
areas of homogeneous brightness level result in long runs and a high corresponding LRE value. On the other hand,
wrinkled areas are characterized by low LRE values.

Based on RLM’s LRE moment, an algorithm that facilitates wrinkled area extraction was developed. The
algorithm takes the rotated image of an individual kernel as the input. For every pixel of the input image, pixels in
the vertical run including that pixel and having a similar gray-scale to the pixel, are counted. The brightness of all
the pixels in a run may vary from the brightness of the reference pixel by no more than k, where k is a parameter
of the algorithm. Next, the corresponding pixel in the output image is substituted with the number of counted
pixels in the run. Following this, the output image is smoothed by means of a median n x n filter, and thresholded
at the level of t, where n and t are also parameters of the algorithm. The experiment was performed to establish
appropriate values of the algorithm parameters. The reference image was used, in which an experienced assessor
depicted the wrinkled regions manually. It was established that wrinkled regions automatically detected are
comparable with regions manually outlined for k = 8, n = 3 and t = 5. Thus, this set of parameters was used for
analysis of other images of barley kernels.

3. Results and discussion

3.1. Algorithm validation

The algorithm was written in C language and compiled for the Microsoft Windows platforms utilizing the
Intel’s OpenCV library implementations of basic image processing operations. The computation time was
measured on a 2673 x 4031 pixels color image of 543 Blask barley kernels — 272 on dorsal sides and 271 on
ventral sides. On a computer with a 650 GHz Intel i5 CPU the algorithm took 68 s to process the image (126 ms
per kernel). The algorithm correctly identified and counted all the kernels in the image, it correctly identified the
germ-brush direction in 532 cases (98%) and dorsoventral orientation in 525 cases (96.7%). Selected kernels
which produced incorrect results are presented in Fig. 6. In Fig. 6a, the crease was not exposed, but the presence
of a black line of elongated fold casing led to incorrect classification. Fig. 6b shows a highly asymmetric kernel
whose orientation was incorrectly recognized due to a side-wise location of the crease. The grain in Fig. 6c is
abnormally narrow on the germ side, and as the result, the germ—brush direction was incorrectly identified.

The algorithm was developed to support image segmentation and specify the regions corresponding to
individual grains and sub-regions of wrinkled areas. To validate the segmentation procedure, the regions produced
by the algorithm were compared with the corresponding regions depicted by a professional grain quality assessor.
The number of pixels was counted, including pixels belonging to both regions (number of true positives — TP),
pixels belonging only to the manually depicted region (number of false negatives — FN) and pixels belonging
exclusively to the automatically obtained region (number of false positives — FP). Subsequently, three quantitative
measures were computed: the Jaccard similarity coefficient (ratio of TP to the sum of TP, FN and FP), precision
(ratio of TP to the sum of TP and FP) and recall (ratio of TP to the sum of TP and FN). The average values of
quantitative measures, averaged for all grains, and standard deviation values are listed in Table 1 and Table 2.
Selected examples of the compared regions are presented in Fig. 7.



(a) (b) ©

Fig. 6. Selected kernels with incorrectly determined orientations: (a) grain with an elongated fold incorrectly recognized
as crease, (b) deformed, asymmetric grain whose crease was not detected, and (c) grain with incorrectly identified
germ-brush direction.

(@) (b) (©)

Fig.7. A comparison of manually and automatically depicted regions: (a) original image, (b) regions corresponding to

individual grains, and (c) regions of wrinkled areas. The regions depicted by the assessor are marked green (FN area),

the regions depicted automatically are shown in red (FP area), and the intersection of two regions (TP area) is marked
yellow.

The further validation of the algorithm involved analysis of 11 varieties of barley kernels at three
different levels of moisture content — altogether 33 images showing over 15,800 kernels. The results obtained by
automatic image analysis were than verified by an experienced assessor, who pointed out and counted improperly
recognized kernels. The assessment considered the indication of the kernel and wrinkled area regions, as well as
the determination of dorsoventral and germ—brush orientations. The summary of the results obtained automatically
and the results of the assessment are presented in Table 3. It shows the number of kernels per image ranged from
476 up to 480. The number of omitted or unidentified kernels per image ranged from zero up to four, which
amounted in 0.1% of the total number of kernels. In all such cases the error was caused by failure to keep
adequate distances between kernels. There were 77 cases (0.49%) of kernels for which the wrinkled area was
incorrectly outlined, ranging from zero up to seven cases per image. The dorsoventral orientation was incorrectly
recognized in 4.12% of all kernels. It must be noted that the largest number of such errors occurred in the Prymus
variety, for which the dissimilarity of a kernel’s width at the germ and the brush sides are not as evident as in the
other varieties. Finally, the brush—germ orientation was incorrectly determined in 1.61% of all kernels — in most



such cases the kernels were deformed, their shape was distorted or a fragment was missing. Total percentage of
correctly recognized and depicted kernels reached 93.7%.

4. Conclusions

In this study, we presented a novel algorithm for analyzing visual images of barley kernels. The algorithm
identified and counted kernels within the image, depicted wrinkled and smooth regions of kernels and also
determined orientation relative to the germ—brush direction and the location of the crease. The validation of the
algorithm confirmed that it is efficient and robust allowing accurate description of over 93% of kernel samples.
The regions of individual kernels determined automatically matched the areas identified by the expert with a high
degree of precision.

Further studies are planned to identify the correlations between texture and color parameters of the
studied regions and the technological properties of grain. The algorithm is planned to be used in the preprocessing
of hyperspectral images, which significantly expands its scope of application. We expect that the proper
identification of kernel regions and their orientations will enable more accurate recognition of the grain varieties,
moisture estimation or potential for germination and growth. Moreover, the proposed algorithm eliminates the
need for human involvement in the assessment process, thus increasing the objectivity, reliability and
reproducibility of the results generated by the automated procedure.
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Table 1. Quantitative measures of similarity between kernel regions.

Similarity indices Average Standard deviation
Jaccard coefficient 0.966 0.009
Sensitivity 0.974 0.010
Precision 0.991 0.004

Table 2. Quantitative measures of similarity between wrinkled regions.

Similarity indices Average Standard deviation
Jaccard coefficient 0.712 0.068
Sensitivity 0.811 0.078
Precision 0.858 0.068

Table 3. Assessment of the automatic analysis results on various varieties of barley kernels.
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Variet = & &
ariety S T o
Prymus 12 479 0 1 35 196 7 283 47
14 480 0 7 31 182 3 298 37

16 479 0 4 37 188 9 291 38

Serwal 12 479 0 5 4 214 15 265 11
14 480 0 3 4 231 8 249 12




16 479 0 0 7 221 15 258 10
Signora 12 479 0 0 3 257 6 222 6
14 478 2 3 2 253 8 225 8
16 479 0 0 1 273 5 206 4
STH 12 479 0 2 1 185 3 294 23
14 479 0 2 218 13 261 31
16 479 0 1 1 187 6 292 18
Victorina 12 479 0 1 1 261 10 218 1
14 478 0 2 5 228 6 250 1
16 476 0 1 4 232 7 244 2
Afrodita 12 476 2 4 3 223 2 253 13
14 480 0 3 5 209 1 271 8
16 478 2 4 6 204 1 274 16
Blask 12 479 0 1 3 231 10 248 3
14 478 0 3 7 229 10 249 4
16 478 2 2 9 235 12 243 1
Bordo 12 480 0 2 4 266 12 214 1
14 480 0 2 6 253 9 227 3
16 479 0 5 3 256 8 223 2
Conchita 12 478 2 4 6 208 5 270 11
14 479 0 2 4 224 5 255 5
16 476 2 3 7 226 9 250 11
Kormoran 12 478 0 4 6 226 2 252 6
14 478 0 1 11 228 5 250 9
16 479 0 2 10 190 3 289 13
Mercanda 12 475 4 1 12 218 11 257 15
14 478 0 0 3 254 12 224 14
16 479 0 2 13 228 11 251 17
Total error (%) - - 0.10 0.49 1.61 - 1.58 - 2.54
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