
Implementation of Computer Vision
Algorithms in DirectShow Technology

Piotr Szczypinski1, Pawel Pelczynski2, Dominik Szajerman3, and Pawel
Strumillo4

1 Institute of Electronics, Technical University of Lodz Wolczanska St. 211/215
piotr.szczypinski@p.lodz.pl

2 Institute of Electronics, Technical University of Lodz Wolczanska St. 211/215
pawel.pelczynski@p.lodz.pl

3 Institute of Information Technology, Technical University of Lodz Wolczanska
St. 211/215 drs@ics.p.lodz.pl

4 Institute of Electronics, Technical University of Lodz Wolczanska St. 211/215
pawel.strumillo@p.lodz.pl

Summary. In this paper an application of DirectShow software technology in a
computer vision system is described. DirectShow (DS) is well suited for image pro-
cessing and analysis tasks. In the reported study it was successfully applied in a
computer stereovision system. Physical cameras of the system are represented by
DS source filters connected to image analysis procedures. Original filter prototypes
were designed for stereo disparity estimation and scene analysis tasks. Image analysis
procedures for scene depth estimation were build and tested. The developed system
has proved usefulness of the DirectShow technology in computer vision applications.

1 Introduction

Development of vision systems that employ multiple hardware and software
resources is not a straightforward task. Such systems should be of modular
structure and have flexible architecture. The modular design is important in
projects including a group of programmers working on different aspects of the
project. The system should be flexible not to depend on specific hardware or
hardware versions and it should automatically adapt to various configurations.
Another requirement in vision systems is a need for conversion of data forms
and formats. One of such problems is object tracking in image sequences. The
input is a video data whilst the output is usually a motion defined by co-
ordinates, motion vectors and rotation angles. Moreover, multicamera vision
systems such as stereovision systems require data synchronization and paral-
lel data processing (multithreading, pipelining and graphics processing units
general-purpose computing). The requirements of vision systems program-
ming and achieving acceptable programming efficiency in such vision systems



2 Authors Suppressed Due to Excessive Length

can be satisfied by employing multimedia frameworks - technologies for mul-
timedia software development. The goal of this publication is to present the
application of DirectShow multimedia framework in a stereovision system for
detection of objects, object localization, tracking and its parametric descrip-
tion.

DirectShow (DS) is a software technology for multimedia applications in
Microsoft Windows operating systems [1], [2]. It serves as a framework for
development of video and audio processing programs and modules. DS is
one of the three multimedia technologies available for Windows platforms.
The two other are Video for Windows and Media Foundation [3]. One of the
main features of DS is its modularity. DS modules are called filters. They
could be developed by different groups of programmers or software producers
independently. Filters are dynamically connected into the so called graph in
the time of program execution. There is no need to compile all the modules
into a single application. An example of DS based video player is shown in
Fig.1. It consists of the following filters: video file reader, audio video splitter,
decompression of audio and video, and presentation filters.

Fig. 1: Graph of filters for video file playback

Filters are implemented as DLL libraries. They are developed according to
the specification of Component Object Model (COM) technology. The main
assumptions are:

- each filter is a separate COM object,
- each filter is identified by its unique GUID number,
- filter properties are stored in the Windows registry file.
Connection of filters can be a fully automatic process. The type of filter

used and its possible connections depend on a set of filters available in a given
computer. Thus, the same multimedia file can be played by using different
filters or cannot be if the important filter lacks. DS application interacts with
filters via intermediary COM object called filter graph manager. It builds a
graph by using IGraphBuilder. Graph is a set of connected filters. If necessary,
additional transform filters are added to provide compatibility of different
data stream formats between filters. The main application can also point out
specific filters to be used or even specify connection order. Intermediary object



Implementation of Computer Vision Algorithms... 3

is also used to control filter functions, e.g. play, rewind or pause of the video
stream.

2 Filter programming

DS filter is largely a self-processing module with a significantly greater number
of functions and tasks than would result from the operation of the algorithm
for processing multimedia data. This module is equipped with interfaces to
communicate with other filters, intermediate objects (GraphBuilder) and the
main program. These methods are public, available (can be called from out-
side the filter) and abstract (undefined). Filter interfaces are identified by
individual, unique GUID numbers and they have to be compatible with COM
technology. A typical interface is the interface of filter terminal, called IPin.
Its methods are listed below.

Table 1: An example of IPin interface methods

Method Description

Connect Connects the pin to another pin
ReceiveConnection Accepts a connection from another pin
Disconnect Breaks the current pin connection
ConnectedTo Retrieves the pin connected to this pin
ConnectionMediaType Retrieves the media type for the current pin connection
QueryPinInfo Retrieves information about the pin
QueryId Retrieves the pin identifier
QueryAccept Determines whether the pin accepts a specified media type
EnumMediaTypes Enumerates the pin’s preferred media types
QueryInternalConnections Retrieves the pins that are connected internally to this pin
EndOfStream Notifies the pin that no additional data is expected
BeginFlush Begins a flush operation
EndFlush Ends a flush operation
NewSegment Notifies the pin that media samples are grouped as a segment
QueryDirection Retrieves the direction of the pin (input or output)

IPin interface provides the methods:
- for negotiating data formats (EnumMediaTypes),
- for connecting and disconnecting terminals (Connect, Disconnect),
- for identification (QueryID),
- for data flow control (EndOfStream, BeginFlush, EndFlush) and others.
IPin interface inherits input and output object classes, e.g. CBaseInput-

Pin and CBaseOutputPin. These classes provide some additional methods for
multimedia data transfer. A fully functional filter provides multiple interfaces



4 Authors Suppressed Due to Excessive Length

of the methods. These are the interfaces of individual pins, the interface in-
dicating filter resources, a filter work control interface, the interface of dialog
box for filter properties, etc.

Fig. 2: Filter interfaces

The methods included in the interface must be implemented (written) by
the developer creating a filter. It is necessary to provide adequate communica-
tion between the main program, an intermediary object and the neighbouring
filters. This communication deals with several aspects: filter interconnection
strategy, negotiation of transmitted data formats, interface and pin identifica-
tion, control of data stream playback, processing and synchronization, man-
agement of threads for filter control and data transfer, etc. The flexibility of
the DS brings with it a significant complication of the process of creating a
filter.

Writing the filter from scratch would be extremely laborious without base
classes, which were made available by Microsoft. Base classes implement a
part of more trivial methods, necessary for the proper functioning of the fil-
ters with specific functionality. While creating own filter one creates a new
class that inherits from the selected base class. For example, writing a data-
processing filter the following base classes can be used: CTransformFilter,
CTransformInputPin and CTransformOutputPin. Creating a source filter (eg,
providing data to graph from the outside) or output filter (presentation), we
can use base classes: CSource and CRenderedInputPin.

Necessary Tools for creating DS filters are: the development environment
(it is sufficient to use Visual C++ Express Edition [4]), Windows Platform
SDK (includes base classes and tools for testing filters), the program Guid-
gen, the regsvr32 tool and GraphEdit program (included in the Windows
Platform SDK) or Graph Studio. Visual C++ environment is used to create
filter’s source code and its compilation. The environment allows also to com-



Implementation of Computer Vision Algorithms... 5

pile a library of base classes available in the Windows Platform SDK. Guidgen
program is used to generate GUID numbers identifying the filter and its in-
terfaces. Regsvr32 program is available in Windows system directory and is
used to register a new filter in an operating system. Programs GraphEdit and
GraphStudio are used for graph visualization, manual filter connection into
graphs and testing their performance.

Fig. 3: Filter graph for disparity estimation in GraphEdit window

3 Filter pattern design

The aim of this study was to develop a methodology for the design of vision
systems for scene analysis using DirectShow technology. Implementing the
system using DS required to develop filters with specific functionality, number
of inputs and outputs, control, types of data formats for input and output.
The system includes filters for calculating disparity map, object detection and
presentation of analysis outcomes. In order to integrate algorithms that were
developed earlier, filters with the required functionality need to be defined in
DS system. Filter source code was written in C++, using the COM and DS
specification, and DS base classes. The written source code is a package of
algorithms for image processing and analysis. It is fully functional in terms
of DirectShow technology, but the code need to be supplemented in order to
obtain the system functionality. Code fragments, where additional commands
need to be entered, were marked in the source code.

All data in the DS system are transferred by objects belonging to the class
inheriting from the IMediaSample interface. This interface allows to download
information about the index to a block of data transmitted and the size of
the block (methods: GetPointer and GetActualDataLength). Format of the
received data or data sent through the filter is determined in the negotiation
process. To send data about data formats CMediaType class objects are used
(containing AM MEDIA TYPE structure) in the described project. Structure
AM MEDIA TYPE carries information about the main type (majortype),
subtype, and optionally additional information tables set out by the field



6 Authors Suppressed Due to Excessive Length

Formattype. These additional tables may be e.g. VIDEOINFOHEADER for
imaging data.

Developed filters operate on two types of multimedia data, namely: uncom-
pressed image data and a table describing a result of image sequence analysis,
such as the scene model parameters.

1. Imaging data: majortype: MEDIATYPE Video, Subtype: MEDIASUB-
TYPE RGB32 or MEDIASUBTYPE RGB24. These are colour images of
32 or 24 bits per pixel. Note that DS does not define the greyscale image
format. 2. The data describing the objects’ parameters: majortype: MEDI-
ATYPE Video, Subtype: MEDIASUBTYPE NAVIOBJ.

Filter development procedure was defined as a set of the following modi-
fications:

1. Find the header file, which defines the filter GUID identification numbers,
2. Generate a new GUID numbers and replace them in the header file,
3. Find the structures AMOVIESETUP FILTER and CFactoryTemplate in

the source file of the filter, and replace the names of the filters and titles
of the properties dialog boxes.

4. Find a piece of code marked ”@@@@ Complete code here ... ” and write
a code of the required calculation algorithm.

4 DS based application for scene depth estimation

On the basis of the prepared filter pattern new filter was designed. It performs
initial image preprocessing and disparity estimation in a pair of stereovision
images. Image processing operations were implemented in a graphics process-
ing unit (GPU), which is very efficient in vector operations. More details about
applying GPU for disparity estimation are given in [5].

The developed DirectShow filter is a dynamic-link library which offers a
set of the following image processing functions. They use OpenGL in order
to allow setting of the parameters, passing of the input images to the GPU,
control of the processing on the GPU and fetching the results from it. The
filter has two input pins and one output pin (Fig.4). The input pins are used
to retrieve images from the left and right camera. The images can have any
resolution and should be in RGB colour format (24 bits per pixel). The output
pin transmits the result as the image of the same resolution as the input ones.
The output image is also three-channel. The output disparity is stored in the
first channel. The processing in the filter consists of a few passes. Every pass is
a fragment shader processing of the input textures which contain input data.
The result of each pass is stored in the output texture, which is then delivered
as an input to the next pass. The processing passes are shown in Fig.5:

1. both input images are converted into greyscale and their geometry is cor-
rected and rectified, the result is stored as a single texture (IYl,r).



Implementation of Computer Vision Algorithms... 7

Fig. 4: Filter graph for depth estimation

2. the average brightness is calculated for vertical blocks (size 1× b, where b
is the processing parameter - the block size).

3. the average brightness from previous pass is used to calculate the average
brightness for blocks of size b × b, next it is subtracted from the original
brightness.

4. absolute differences between left and right image are calculated, their
count depends on a processing parameter.

5. the sum of the absolute differences in the blocks (size 1× b) is calculated.
6. the SAD in the blocks (size b× b) is calculated.
7. the minimal from the SADs is chosen, its index is stored as the result -

calculated disparity value.

Fig. 5: Data flow in GPU processing

The results of the described image processing procedure are shown in Fig.6.
Image disparity map is shown as a grayscale image in which closer scene
elements are coded by brighter map regions. GPU implementation makes ex-



8 Authors Suppressed Due to Excessive Length

ecution of this procedure fast enough to be run in real time. Despite the use of
GPU the developed filter is quite universal. It can process images in NVIDIA
GPUs series 8000 and higher.

(a) (b) (c)

Fig. 6: Original image a) undistorted image b) and disparity map c)

5 Conclusions

DirectShow software technology was used to implement computer stereo vi-
sion system. Stereo cameras were represented as DS source filters connected
to the filter for image distortion correction and disparity estimation. Other
filter prototypes were designed for further scene analysis procedures. A useful
system for scene depth estimation was build and tested. The main problems
that were solved while implementing DS multimedia framework were: synchro-
nization of video data obtained from two cameras, definition of the original
object describing data format to be transferred between modules and the im-
plementation of advanced image processing filter in GPU platform. It was
shown that advanced image processing tasks can be mapped onto DirectShow
technology that offers more efficient software development and testing in a
group of cooperating programmers.

References

1. Microsoft (2007) MSDN DirectShow documentation.
http://msdn.microsoft.com/en-us/library/ms783323.aspx. July 7, 2007

2. Pesce, Mark D (2003) Programming Microsoft DirectShow for Digital Video
and Television. Microsoft Press. April 16, 2003

3. http://en.wikipedia.org/wiki/Multimedia framework
4. http://www.microsoft.com/express
5. Strumio P, Szajerman D, Peczyski P, Materka A (2009) Implementation of

Stereo Matching Algorithms on Graphics Processing Units, Image Processing
& Communications Challenges (R.S. Chora, A. Zabudowski, Eds.), Academy
Publishing House EXIT, Warsaw 2009, pp 286-293.


