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Abstract  

Wireless Capsule Endoscopy (WCE) provides a means to obtain a detailed video of the 

small intestine. A single session with WCE may produce nearly 8 hours of video. Its 

interpretation is tedious task, which requires considerable expertise and is very stressful. The 

Model of Deformable Rings (MDR) was developed to preprocess WCE video and aid 

clinicians with its interpretation. The MDR uses a simplified model of a capsule’s motion to 

flexibly match (register) consecutive video frames. Essentially, it computes motion-

descriptive characteristics and produces a two-dimensional representation of the 

gastrointestinal (GI) tract’s internal surface – a map. The motion-descriptive characteristics 

are used to indicate video fragments which exhibit segmentary contractions, peristalsis, 

refraction phases and areas of capsule retention. Within maps, certain characteristics that 

indicate areas of bleeding, ulceration and obscuring froth could be recognized. Therefore, the 

maps allow quick identification of such abnormal areas. The experimental results demonstrate 

that the number of discovered pathologies and gastrointestinal landmarks increases with the 

MDR technique. 
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1. Introduction 

The human small intestine, which measures approximately 6 meters, is difficult to 

visualize completely using a traditional endoscopic approach. Wireless Capsule Endoscopy 

(WCE) [1-7], which is primarily marketed by Given Imaging®, is a relatively new technique 

that facilitates the imaging of the small intestine. The WCE system consists of a pill-shaped 

capsule (Fig. 1) with built-in video camera, light-emitting diodes, video signal transmitter and 



battery, as well as a video signal receiver-recorder device. The capsule is ingested by a patient 

and passes through the gastrointestinal (GI) tract. It is propelled by peristaltic movements 

within the GI tract and by gravity. There is no mechanism to control the capsule’s speed or 

direction as it traverses the GI tract [16, 17]. It is also not possible to measure the capsule’s 

location or orientation during its traversal within the human body [18, 19]. 

The capsule transmits color images of the internal lumen of the GI tract at a rate of two 

frames per second for approximately 8 hours. The images are 256×256 pixels. The 140° field 

of view covers a circular area in the center of a frame which is about 240 pixels in diameter. 

The transmitted images are received and recorded by an external receiver-recorder device.  

The investigation of WCE’s video recordings is performed by a trained clinician. It is a 

tedious task that takes a considerable amount of time, usually more than an hour per 

recording. The video interpretation involves viewing the video and searching for bleedings, 

erosions, ulcers, polyps and narrow sections of the bowel due to disease or any other 

abnormal-looking entities. The interpretation always requires a high level of concentration for 

viewing the entire video recording, so as not to miss focal lesions that might be present in 

only a few frames and could be easily missed. 

The WCE video frames may be classified into three categories: 1) cases of normal 

mucosal appearance, 2) abnormal findings (most likely diseased fragments of GI tract), and 3) 

frames showing an intestinal content obscuring a view of GI tract (e.g. bubbles, digested or 

partly digested food). Also useful would be the segmentation of video into fragments 

representing stomach, duodenum, small intestine and colon, or to detect topographic marks 

such as pylorum or ileo-cecal valve. An automatic method that would provide such a 

categorization for WCE video images or one that provides some additional information useful 

for such categorization (which is not immediately available from the video) would improve 

the effectiveness of the interpretation process. A trained gastroenterologist would decide 

which video fragment should be viewed with the highest concentration, and which fragments 

may be disregarded due to froth or partially digested luminal content that obscures the 

mucosal details and makes interpretation infeasible.  

Several research groups have recently reported methods for GI tract segmentation into 

sections. In [12-15] image color and texture descriptors defined by MPEG-7 standard are used 

for topographic segmentation of GI tract into sections. A similar approach has been presented 

in [16-17], where the color and texture descriptors are used for image classification and 

pylorus detection. 

Another classification procedure is presented in [18]. Image features, such as image 

intensity, contrast and selected geometrical parameters, are extracted from WCE video 

frames. Then, feature vectors computed for nearby frames are compared. The WCE video is 

divided into fragments containing contractions, when the vectors vary, and non-contractions 

fragments, when the vectors are similar. Authors demonstrate that fragments with contraction 

are of special interest to the physician [18].  

Methods for continuous tracking of an endoscope camera motion were reported in [19-

23]. The methods use epipolar geometry analysis supported by registration of real and virtual 

endoscopy images. Virtual endoscopy images can be created by 3D modeling on computed 

tomography (CT) data, whereas the real images are produced during endoscopic examination. 

These methods have proven their usefulness with image guided bronchoscopy. However, the 

problem of tracking motion within WCE video is different. A small intestine, unlike trachea 

or bronchi, is elastic and in motion due to peristalsis. Therefore, 3D visualization is difficult, 

and also epipolar equation cannot be directly applied. Furthermore, WCE examination is 

rarely combined with CT examination or any other 2D or 3D visualization technique.  

Based on our earlier work in image processing [24-30] and experience in endoscopic 

examinations [31], we have developed the Model of Deformable Rings (MDR). The MDR is 

a unique technique that registers consecutive WCE video frames and follows the capsule’s 

motion. The goal of the model is to process the video, which is of low spatial and temporal 

resolution, when no additional data on localization or orientation of the capsule is available, 

and no other visualization technique was used. The outcome should be medically useful to 



make the video interpretation more efficient, to reduce number of missed abnormalities or 

reduce the time spent on the interpretation.  

The MDR computes motion descriptors and a two-dimensional map of the internal surface 

of the digestive system. The map serves as a quick reference to the video sequences, supports 

identification of segments of the bowel and can be glanced through for quick identification of 

large-scale abnormalities. The capsule motion descriptors provide data sufficient for 

localization of video sequences that show narrow sections of the GI tract, where the capsule 

either stopped or slowed down considerably. 

This paper is organized as follows. In the next section we describe the MDR technique, 

which includes an explanation of the motion tracking technique, the concept of elasticity and 

a method for local tension computation with regard to a variable size neighborhood. We 

follow this by a general explanation of the model’s behavior, introduce the original concept of 

forming a digestive system map and present a method of motion descriptors computation. We 

also explain our approach to the selection of a motion estimation method and the model’s 

parameters. Then, we demonstrate our technique through selected examples of GI tract maps 

and images, followed by comments on how the results of the WCE video preprocessing can 

support the interpretation of presented cases. Finally, we provide results that compare WCE 

video interpretations with and without use of the MDR, present our conclusions and 

enumerate areas for future work.  

2. Model of deformable rings 

2.1. Overview 

The key concept behind WCE video processing with MDR involves tracking movements 

of digestive system walls by elastic matching (registration) of consecutive video frames. The 

model estimates intensity of image motion toward and outward from the center of the video 

frame.  

If portions of the image shift outward from the image center it indicates the capsule passes 

through the GI tract and its camera points forward with respect to the motion’s direction. 

When portions of the image shift toward its center, it means the camera points back. Thus, 

essentially the MDR is a tool for partial egomotion estimation of the capsule. 

The MDR is a member of the deformable models family [24-30, 32-38]. As with many 

other deformable models it is composed of active interconnected nodes. The uniqueness of 

MDR lies in the arrangement of these nodes which form concentric rings with their centers 

located near the center of the image frame.  

Essentially, the model works as follows: The nodes store portions of a current image 

frame, or local image properties, found at their locations. The image frame, then, changes to 

the subsequent one. Within the new frame, nodes search the image to find fragments 

resembling the fragments stored, or having similar properties to the properties stored. Then, 

nodes are shifted toward the locations of these image fragments that were found. To preserve 

the arrangement of MDR nodes, the model incorporates tension computation. Therefore, on 

one hand nodes push toward the locations they found to be similar to the stored ones and on 

the other hand the excessive movement is prevented by tension modeling. The final location 

of each node is found iteratively, after obtaining a balance between the two factors. The 

balance is found by minimization of the model’s energy function, which we define as follows: 
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The energy is a total of individual nodes’ energies. A node’s energy is composed of two 

components. The Mp,q component models the image influence and should reach its minimum 

when the node is located at the image fragment which is most similar to the stored one. The 

Ep,q component is responsible for tension modeling, and is minimal when there are no local 

deformations near the node. The EMDR energy depends on the nodes’ locations and is a 

function of their coordinates. Therefore, the minimization of energy function results in 

changing the model’s shape, orientation and position. 



To minimize the EMDR energy a gradient descent optimization is applied. The minimum of 

a function is estimated iteratively, by modifying a vector of the function arguments by a 

vector proportional to the negative of the functions gradient, given by equation (2).  
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After a specified number of iterations the image characteristics are again stored within the 

nodes’ memories and the process repeats for the subsequent frame. It continues until the last 

frame of the video sequence is reached. 

We assumed a simplified nature of a capsule’s motion, that most of the motion is 

longitudinal with respect to the longitudinal axis of the capsule. The capsule is elongated and 

surrounded tightly by walls of the GI tract. This causes the capsule to align its longitudinal 

axis with the course of the tract and also to move along this direction most of the time. The 

model tracks the longitudinal motion and a roll rotation of the capsule. It turns around the 

image center in case of roll rotation. The model shrinks during backward motion, or grows 

during forward motion. The MDR size changes are used for longitudinal velocity estimation 

of the WCE within the GI tract. The MDR’s ability to follow other motion components is 

restricted; however, type and strength of such motion components are characterized. 

When processing video data, MDR rings are virtually cut and laid out flat as a two-

dimensional map. The map is a key result produced by the model. The map can be correctly 

assembled when the capsule aligns its longitudinal axis with the course of the tract. Otherwise 

only one side of the surrounding walls is shown, which makes it impossible to do the 

complete tract’s surface reconstruction. We believe that the ability of the model to track only 

the longitudinal motion and rotation satisfies requirements for the map assembly.  

2.2. Representation 

A model of deformable rings consists of nodes, which are connected to form a mesh. The 

mesh is positioned in the plane of a video frame. It forms concentric rings surrounding the 

center of the frame (Fig. 2). Every node of the mesh is referred to by a pair of indexes p = 1, 

2,...P and q = 1, 2,...Q., where P is a number of rings and Q is a number of nodes per ring. 

The initial location of a node within the image coordinate system is given by the following 

formula: 
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The initial location is a location on the first frame of a video sequence, before the actual video 

processing starts. The r parameter is a radius of inner ring and the w is a ratio of radii of 

adjacent rings. The center of coordinate system here is placed in the center of a WCE video 

frame. Parameters r and w are adjusted to fit the model within a valid area of the video frame, 

leaving some margin of the valid image on the sides (Fig. 2.b). The shape given by (3) serves 

both as an initial shape of the model and as an undeformed reference shape used for tension 

computation, which will be explained in the following sections. 

2.3. Image influence 

Since the basic task of the MDR is to follow the motion of image content, the crucial 

problem is to select an appropriate form of the image influence energy (Mp,q ). The energy 

should specify local image dissimilarity. The most common dissimilarity measures used in 

motion estimation are mean square error (MSE) and mean absolute difference (MAD). 

Similarity measures commonly used with video processing or image registration applications 

are normalized cross-correlation (NCC) [39, 40] and mutual information (MI) [41]. 

The MAD and MSE functions of N×N pixels block located at (x+∆x, y+∆y) inside the 

current frame and a N×N pixels block located at (x, y) in a previous frame are defined as 

follows: 
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where Ik is a current frame and Ik-1 is a previous frame of a video sequence. In the MDR the 

required block of a k-1 frame is stored within a node memory. The minimum value of 

dissimilarity measure indicates that regions are alike. Since the digital image’s space is 

discrete the x, y, ∆x and ∆y are integer numbers.  

The NCC of two image blocks is defined as follows:  
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where µ is the mean value of block histogram and σ is the standard deviation. 

The MI [41] of two discrete random variables A and B can be defined as follows: 

( ) ∑∑=
a b bpap

bap
bapBAMI

)()(

),(
log),(,  (7) 

where p(a, b) is the joint probability distribution function of A and B, and p(a) and p(b) are 

the probability distribution functions of A and B, respectively. In our approach A is the 

distribution of grey values of N×N pixels image block located at (x, y) within the current 

frame and B is the distribution of grey values of such a block located at (x+∆x, y+∆y) within a 

previous frame.  

Dissimilarity measures or negative of similarity measures multiplied by a ξ parameter are 

used to model the image influence Mp,q in equation (1). The ξ controls contribution of image 

influence component in the model’s energy. 

The gradient of dissimilarity function is computed by means of Sobel operator. For non-

integer coordinates of nodes, it is bilinear interpolated.  

Results of MDR performance and comparisons of various methods for image influence 

computation were reported in [30] and are presented in the section 3.1. 

2.4. Tension computation 

We use a novel technique for the tension computation. This technique compares current 

location of a node referenced to its location within the undeformed model against current 

location of neighboring nodes (n-neighborhood) referenced to their location within the 

undeformed model. We define the n-neighborhood (N) of node p, q as a set of all MDR nodes 

(k, l) connected with the node p, q by n or less number of connecting lines, and it includes the 

node p, q itself.  

The MDR follows image motion, which may include translation, change in size and 

orientation. Therefore, the transformation of a neighborhood from its initial location given by 

(3) can be defined by a translation vector Tp,q and a scaling-rotation matrix Jp,q (Fig. 3). 
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Vector Tp,q and matrix Jp,q are computed to minimize a mean square error εp,q (10) 

between actual locations of neighborhood nodes and locations computed by means of the 

affine transformation. 
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where [xk,l , yk,l]
T
 is a current location of node k, l, which belongs to the neighborhood of the 

node p, q. 

The εp,q is a function of j11, j12, t1 and t2. The minimum of the function exists and hence, at 

the minimum, derivatives of εp,q with respect to the j11, j12, t1 and t2 must be equal to zero. The 

p,q indexes are omitted for simplicity of notation. 
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The solution to the above system of equations is: 
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We define the Ep,q energy as a sum of two components, weighted with ρ and ζ parameters. 

The first component is proportional to the square of distance between a current location of a 

node p,q and its location transformed with Tp,q and Jp,q. It takes into account the local tension 

modeling. The second component keeps the MDR near the center of a video frame. It is 

proportional to the square of global MDR displacement from the image center.  
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The Ep,q (13) is a function of xp,q and yp,q. Therefore, the energy gradient is computed 

using the following formula: 
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The proposed method for tension computation is computationally effective. Moreover, it 

is easy to compute tensions for nodes located at the border of a deformable model. This is not 

straightforward with methods, which utilize second order differential equations, commonly 

used with deformable models. The other advantage of the method is its potential to compute 

tensions within irregular meshes.  

2.5. Elastic matching 

The elastic matching is a process of successive displacements of nodes intended for 

finding a state, in which balance between the two effects, image motion and tension, is 

obtained. In successive iterations (i), nodes move toward locations, in which balance between 

the vectors is achieved. The displacement of a node is computed using the following formula: 
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The displacements are computed for all the nodes p,q and then process is repeated several 

iterations per frame. The process of displacing nodes is repeated until some state of 

equilibrium is reached, i.e., average displacement distance of the MDR nodes drops below 

some selected threshold value, or until an iteration index reaches some arbitrarily chosen 

maximum (I). When the process is completed, image properties found at node coordinates are 

stored, the next video frame is presented to the algorithm and a process of elastic matching is 

repeated. This continues until the last frame of the video sequence is reached.  

It was experimentally found that the process of matching is more efficient during the 

initial stages, if a neighborhood n is large enough to comprise all the nodes. In this way, the 

Tp,q and the Jp,q are computed for the entire model and only once per iteration. Therefore, the 

model quickly adjusts its position, size and orientation. This phase of matching may be 

compared with rigid image registration. Later, the n parameter is decreased, and the MDR 

deforms locally, matching the image details. This phase may be compared with non-rigid 

image registration. 

2.6. Rings swapping and map assembling 

As already mentioned, if the capsule moves forward, the MDR expands while matching 

consecutive video frames. If the capsule moves backward the model shrinks. We determine 

the present size of MDR in relation to its initial state (3) by computing the Jg matrix. The Jg 

matrix is computed the same way as the Jp,q matrix, with a neighborhood including all the 

MDR nodes. The square root of determinant Jg is a measure of model’s size in relation to its 

initial size. 

To prevent the model from excessive expansion or from shrinking, limits on the model 

size are set. If the model is too big, i.e., det Jg > w
2
, then the outer ring of a model is erased 

and a new inner ring is created. If it is too small, i.e., det Jg < w
–2

, then the inner ring is erased 

and a new outer one is added. In either case, the image content is sampled along the outer ring 

to form a row of pixels. All such rows collected during the video processing are put together 

to make an image – the map of GI tract. 

2.7. Velocity estimation and deformation coefficient 

We use two approaches to estimate the capsule’s velocity. In the first one, we assume that 

digestive system walls stick to the capsule’s casing including its transparent dome (Fig. 4.a). 

The second approach assumes the digestive system is akin to a rigid pipe (Fig. 4.b) of a 

diameter close to the capsule’s diameter. 

In the first approach, since the dome of the capsule is spherical, the distance S the capsule 

moves about is proportional to the change in an angle φ, at which a selected fragment of the 

tract is viewed by the capsule’s camera. When the surface of the image sensor is considered, 

the fragment appears at a distance d = f tan(φ) form the center of the sensor. Therefore, the 

velocity is estimated using the following equation: 
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where d1 and d2 are sizes of the MDR observed at two different times, and ∆t is a time 

between the two observations. The d parameters are derived from the Jg matrix determinant, 

using the following formula: 

g

Pwrd Jdet1−=  (17) 

If the rings’ swapping occurs, the d1 parameter is computed afterward.  

In the second approach the perspective projection scheme is applied. The distance to the 

object is proportional to the reciprocal of its image size produced on the surface of the image 

sensor. Thus, the capsule’s velocity is estimated using the following equation: 
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The two estimated velocities are computed each time the rings are swapped and a new 

row of pixels is appended to the GI map. Therefore, every line of the digestive system map is 

assigned two velocity values: VD and VP. 

Since the capsule’s motion is not always smooth and parallel to its symmetry axis, the 

velocity estimation is usually inaccurate. It is also hard to determine which of the two 

approaches should be used to estimate the velocity in a particular case. 

In our study of the MDR, we have also explored plots of the models motion descriptive 

coefficients, which are computed per frame after the matching process finalization. The 

models displacement from the image center determines amount of motion components caused 

by pitch and yaw rotations or sideways movement. It is defined by the following formula: 
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The deformation coefficient measures the amount of the local model’s tension. The 

coefficient may indicate video fragments which exhibit deformations of GI tract due to 

contractions, fragments in which the motion was jumpy or the image changed significantly 

from one frame to another. The deformation coefficient is defined as follows: 
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Both the G1 and G2 coefficients are useful in pointing these video fragments, which 

should be thoroughly investigated. We discuss this concept in section 3.2.  

3. Results 

The MDR was implemented in C++ as a video processing module for Microsoft® Direct 

Show technology. In this study the MDR with P = 7 rings with Q = 128 nodes per each ring, 

and parameters r = 70 pixels and w = 1.04 have been used.  

Three experiments were performed to optimize the model’s performance and to assess its 

usefulness in aiding the capsule endoscope video interpretation. The first one compares the 

MDR performance implementing various dissimilarity measures for image influence 

computation. The second experiment demonstrates the MDR ability to discriminate various 

motility patterns. The third one verifies whether the use of the MDR map improves the 

interpretation results. We also present example cases in which maps show informative details 

beneficial for interpretation. 

3.1. Image dissimilarity measure 

We considered four dissimilarity measures for image influence energy computation: - MI, 

- NCC, MSE and MAD. Therefore, we designed an experiment that verified these methods and 

let us select the most appropriate one for WCE video preprocessing. The selected method had 

to satisfy the following conditions: 1) the resulting map should present relevant details; 2) the 

model should at least follow the forward and angular roll motion; 3) the model should be 

immune to other types of motion that it cannot handle properly, and after such motion ends it 

must correctly proceed with video preprocessing; and 4) the time required for video 

preprocessing should be acceptable from a practical point of view. We expect the processing 

of 50000 frames would not exceed the typical time of interpretation (less then 144 ms/frame). 

In our experiment we use an artificial video (Fig. 5), created with 3D graphics rendering 

software. The video demonstrates constant speed forward motion (0.19 mm/s) and the rotation 

in roll with a constant angular speed (7.2°/s).  

The parameters set during the experiment were constant except for N and ξ. The 

maximum number of iterations per frame was set to I = 14. Tension coefficients for the first 

10 iterations were set to ρ = 1 and ζ = 0.05, with neighborhood including all the nodes 

(n = 64); then these parameters were reduced to ρ = 0.5 and ζ = 0.01, with n = 2. The motion 

estimation methods were tested with a range of ξ coefficients and several image block sizes 

(N = 1, 3, 5, 7 and 9). Parameter ξ during last four iterations was always reduced by 50% with 



respect to its value during first 10 iterations. For each of the methods tested, we selected a 

range of ξ parameters, for which the method produced best results. Selected results produced 

by the MDR are shown in Fig. 6, Fig. 7, Fig. 8 and Table 1 (computation time per frame).  

The results obtained with MI were produced for images for which the number of bits per 

pixel and per color component was reduced from 8 (256 levels of color component) to 3 (8 

levels). The reduction was necessary to decrease computation time, which for 24 bits per pixel 

images reached 5 minutes per frame. We did not notice any significant deterioration of MDR 

performance caused by the reduction. 

The plots of the estimated velocity VP are presented in Fig. 7. The plots of the estimated 

angular speed ω of roll rotation are presented in Fig. 8. In all the tested methods there exists a 

pair of N and ξ parameters for which the MDR correctly computes both the linear and the 

angular speeds. In cases of MAD, NCC and MSE a range of N and ξ parameters, for which the 

estimated speeds are close to the expected ones, can be observed. 

In case of MAD the results close to the expected ones (error less then 5%) are obtained for 

all the tested block sizes and for ξ parameter in range of 0.03 and 0.2 (6 times variability). A 

plateau of the MAD function can be observed within the range. In other cases (NCC, MSE and 

MI) ranges of acceptable N and ξ parameters are smaller. Moreover, the computation time 

required to process video is the smallest in case of MAD (Table 1).  

For further experiments we selected the following method and parameters: MAD, N = 3, 

two phases matching process with n = 64 (all MDR nodes within the neighborhood), ξ = 0.1, 

ρ = 1 and ζ = 0.05 for first 10 iterations, and n = 2, ξ = 0.05, ρ = 0.5 and ζ = 0.01 for the 

following 4 iterations of the matching process.  

The MDR performance was then tested on selected fragments of natural WCE video and 

on artificially generated videos demonstrating forward motion, the rotation in roll, as well as 

rotation in pitch and yaw. It was confirmed the MDR is not able to track rotation in pitch and 

yaw. However, the model was found immune to such types of motion, and after such motion 

ended it correctly proceeded with video preprocessing. 

3.2. Motility patterns  

The motility of the small intestine muscles includes two categories of contractions [42]. 

One category is peristalsis, which pushes the intestine content in one direction. The second 

category – segmentary contractions – is intended for mixing the content. The contraction 

phases are separated by the muscles repose – the refraction phases. Therefore, the motion of 

the capsule presented by the video data is irregular, characterized by quick changes of image 

content during the contractions and very slow changes during the refraction phases. From the 

clinician’s perspective the fragments which present quick changes of image content are of 

special interest, whereas motionless fragments are usually fast-forwarded.  

The MDR computed motion descriptors can be used for detection of various motility 

phases of a small intestine. To verify this thesis, three categories of video motion were 

defined: 1) motionless – capsule stopped due to a stricture or refraction, 2) smooth motion – 

capsule is slowly pushed by peristalsis and 3) rapid motion – capsule is turned and tossed by 

the strong contractions (Fig. 9). Then, for each the category, the representative video frames 

were selected – over 100 frames per category – chosen from 50 various video recordings.  

The video recordings were processed by the MDR. The category labeled vectors of |VP|, 

|ω|, G1, G2 and MAD were stored for the selected frames. (The MAD is computed here at the 

final iteration of the matching process and averaged for all the MDR nodes.) Fig. 9 shows 

example maps produced from videos presenting three different capsule motion categories. 

Above the maps, plots of velocity estimation |VP| and the deformation coefficient G1 are 

presented. Fig. 10 (a) presents distribution of vectors in |VP|, G1, MAD subspace. Each sample 

is represented by a digit symbol. The digits indicate the sample membership to an appropriate 

motion class. Samples, which belong to different categories, occupy different areas of the 

subspace. Therefore, the location of the vector within the subspace corresponds to the motion 

category.  



The linear discriminant analysis [43, 44] was performed to determine ability of the stored 

vectors to separate the categories of motion. The distribution of vectors in space of two most 

discriminating features (MDF) is presented in Fig. 10 (b). The linear separability coefficient 

[44] is higher then 0.9 and the Fisher’s separation coefficient equals 3.4. Therefore, the stored 

vectors are able to separate correctly the motion categories in over 90% of cases.  

Next, a formula for controlling the video frame-rate was devised. It was assumed that 

motionless video frames should be presented for 
1
/75 of a second (which is a typical refreshing 

time of computer monitors). For smooth motion video, the frame presentation time was 

accepted to be 
1
/10 of a second. The presentation time for frames exhibiting rapid changes in 

image content was chosen to be 
1
/2 of a second which corresponds with original frame rate of 

the capsule. The linear regression analysis was performed to find the best linear combination 

of the parameters to control frame presentation time. The combinantion found is: 

T = 0.0135 MAD+0.1332 |VP|+0.0037 |ω|-0.3871 G1+0.0007 G2-0.0315 

The frame presentation time in our video player is proportional to the T factor. The ratio 

between the presentation time and the T factor may be adjusted by the clinician during 

interpretation. In addition, the frame presentation time is limited from the top by half a 

second, which is long enough to pause video if required, and from the bottom by the actual 

computer monitor refreshing time.  

3.3. Map assessment  

The MDR was tested extensively with over 60 WCE videos. The time required to 

preprocess a 50,000 frame video is roughly 30 minutes with an Intel Pentium IV 3 GHz 

processor. The maps used for evaluation were 256 pixels wide (sampled at coordinates of 128 

nodes of the outer ring and in between the adjacent nodes) and 15000-25000 pixels high.  

Certain characteristics that indicate areas of bleeding, ulceration and obscuring froth can 

be recognized within maps (Fig. 11). Therefore, the map can be useful for rapid identification 

of such abnormal areas designated for further detailed investigation. Moreover, low values of 

velocity plot indicate areas of capsule retention (e.g., due to structural abnormalities like 

strictures or functional abnormalities like achalasia, gastroparesis, dysmotility or ileus). Also, 

the map shows video fragments useless for investigation due to froth obscuring the view. 

Therefore, use of the map should increase the number of abnormalities discovered in time. 

To verify the above we designed the following experiment. Two gastroenterology experts 

were recruited to interpret ten WCE videos. The experts did not see the videos before the 

experiment. The ten videos were preprocessed with the MDR to produce the MDR map and 

velocity plot. Further, for comparison, the videos were preprocessed to produce a color bar 

image with number of rows equal to the number of video frames, each row of constant color 

which is an average of the respective frame content. Similar color bars are available in 

commercially available software for WCE video interpretation.  

The 10 videos were split randomly into two groups, 5 videos each. Expert no. 1 (Parupudi 

Sriram, MD) investigated the first group of videos with the aid of MDR maps and the other 

group using color bar only. Expert no. 2 (Rajesh Gupta, MD) investigated the first group with 

the color bar and the second with the MDR map. The time of investigation was measured in 

every case. The so-called findings list, with a location and short description of abnormality 

discovered, was stored. All the findings were reviewed. It was acknowledged, all the findings 

(lesions or landmarks) were relevant. Table 2 depicts the results obtained during the 

experiment.  

The overall time spent by two experts on interpretation of the videos was 360 minutes in 

case the videos were supplemented with MDR maps and 367 minutes without maps. The 

number of findings (gastro-intestinal pathologies and landmarks) discovered by the two 

experts was 181 with an aid of MDR map and 147 without the map.  

The results show there is a 2% reduction in time of interpretation and the number of 

discovered pathologies and gastrointestinal landmarks is over 20% higher in case the MDR 

map was applied. We believe that once the doctors get used to the system the interpretation 

time would also reduce considerably. 



4. Conclusions 

The model of deformable rings (MDR) is a new technique for aiding in the interpretation 

of capsule endoscope video. The model processes the video to characterize capsule’s motion 

and to produce a map – a rough representation of gastrointestinal system’s endo-luminal 

surface. The novelty of the model lies in a shape of its mesh, designed particularly to follow 

specific type of WCE motion, in a novel way of tension computation, and in the concept of 

transforming a video into the map. 

The maps enable a clinician to quickly get an overview of the entire recording in terms of 

completeness of the procedure (whether the capsule endoscope traversed the entire GI tract) 

and adequacy of the procedure in terms of the recording quality (absence of obscuring froth or 

luminal content including gross bleeding). It facilitates the identification of abnormal areas 

and focuses the efforts on interpreting the mucosal details of the selected areas before 

examination of the entire recording.  

The pace at which rows of the map are assembled depends on the amount of motion 

detected. The map fragments are suppressed at motionless video and expanded if rapid motion 

is detected. Therefore, the map’s area corresponds with importance of represented 

information. 

The MDR motion tracking ability is limited. It tracks motion when the capsule moves 

smoothly forward or backward. When it moves sideways, is jumpy or flips around, the 

produced map may not be an accurate depiction of the GI tract. Such movements cause 

discontinuities within the map. However, the map discontinuities can be spotted, to indicate 

video fragments for thorough examination. 

It was demonstrated that motion descriptors produced by the model can be used to 

categorize the WCE capsule’s motion patterns. Also, the motion descriptors facilitate 

automatic control of video frame-rate during the video playback. Therefore the video 

playback is automatically slowed-down at fragments which present quick changes of image 

content and are of special interest, whereas motionless fragments are fast-forwarded. 

Moreover, the motion descriptors can be useful in detection of capsule retention areas. 

The experiment, which compared results of video interpretation with and without use of 

the map, demonstrated that the use of the MDR map can reduce errors in the number of 

overlooked abnormalities. The experimental results show the number of pathologies and 

gastrointestinal landmarks found is over 20% higher in case the MDR map was applied.  

Finding more lesions is very important. When one finds lesions like angiomas or 

angioectasia, the number of lesions detected has impact on the treatment options. When only a 

few lesions are found one would contemplate another endoscopic procedure such as push 

enteroscopy or double-balloon enteroscopy to treat the lesions rather than operate. If a number 

of such lesions are localized in a segment of the small intestine, one may prefer to treat by 

surgical resection of that segment of the intestine. In the context of another condition such as 

Crohn's disease, finding more lesions in different segments of the intestine connotes 

widespread involvement. Thus finding more lesions has a bearing on the overall interpretation 

of the extent of involvement of the gastrointestinal tract. 

Additionally, there was a slight reduction in time required for the interpretation. This is a 

promising result, which demonstrates, the MDR map focuses investigator’s attention on 

essential video fragments that could be mistakenly ignored during the standard interpretation 

procedure. 
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Tables 
Table 1. Average computation time per frame in milliseconds 

N MAD MSE MI NCC 

1 18 18 N/A N/A 

3 37 38 132 84 

5 75 75 184 214 

7 127 132 238 397 

9 200 209 327 654 

 

 

 

 
Table 2. Selected results of the WCE video interpretation 

 
 Expert no. 1 Expert no. 2 

Video Findings Time [min] Findings Time [min] 

 Color Bar  MDR Map  

1 9 54 11 38 

2 11 32 12 11 

3 18 38 6 18 

4 22 55 12 24 

5 10 35 11 11 

 MDR Map  Color Bar  

6 24 44 14 25 

7 55 49 25 45 

8 14 40 4 19 

9 8 65 16 34 

10 28 60 18 30 

 



Figures 

 

 
Fig. 1. Wireless capsule endoscope 

 

  
Fig. 2.a    Fig. 2.b 

 

Fig. 2. MDR structure: (a) initial form of MDR structure with node indexing style, and (b) the model 

superimposed on a WCE video frame. 

 



Fig. 3. a Fig. 3. b  

Fig. 3. c Fig. 3. d  
 
Fig. 3. Tension computation procedure illustration: (a) neighborhoods of a node p, q in the MDR and in the 

reference model, (b, c) transformation of reference model neighborhood, and (c) tension vector. 

 



 
Fig. 4. a       Fig. 4. b 

 
Fig. 4. Image projection: (a) capsule within elastic, body-tight hosepipe and (b) capsule within a rigid cylinder 

 

    
 

Fig. 5. Frame number 15 and 20 of artificial video showing constant forward motion and rotation 

 

    
Fig. 6. a     Fig. 6. b 

 
Fig. 6. Resulting maps and estimated velocity plots produced from the same artificial video with: (a) MI N=5 

ξ=1.00, and (b) MAD N=5 ξ=0.05. The blue color of the velocity plot depicts forward motion and the red – 

backward motion. 
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Fig. 7. VP velocity plots as function of N and ξ parameters. 
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Fig. 8. Angular speed in roll as function of N and ξ 



   
Fig. 9. a        Fig. 9. b 

Fig. 9. c 
 

Fig. 9. Examples of map fragments produced by the MDR together with corresponding video frames, velocity 

plots and deformation plots. Examples indicate: (a) motionless video fragment of refraction phase, (b) fragment 

demonstrating peristalsis and (c) segmentary contractions. The blue color of the velocity plot depicts forward 

motion and the red – backward motion. 
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Fig. 10. a 

 

 
Fig. 10. b 

 
Fig. 10. Distributions of MDR motion descriptor vectors: (a) in |VP|, G1 and MAD subspace, and (b) in 

transformed LDA space of two MDFs. 

 

 



 
             a                    b                c                  d 
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Fig. 11. Selected examples of map fragments (here rotated by 90º) produced by MDR together with 

corresponding video frames (at the bottom of maps), and velocity plots (above maps, blue represents forward 

and red backward motion). Examples show: (a) partially digested intestinal content, (b, c) luminal froth and 

bubbles, (d) overexposed image, (e) distal body antral region of stomach, (f) jejunum, (g) ileum, (h) diffuse ulcer 

due to Crohn’s disease, (i) area of active bleeding, (j) focal hemorrhagic erosion and (k) area of capsule retention 

with no obvious mucosal pathology. 

 


