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Abstract

In supervised data classification one of the problems is
to reduce dimensionality of feature vectors. It is important
to find such features which have high ability for discrimi-
nation of diverse classes and to get rid of features which
are useless for such discrimination. In this paper we pro-
pose a new method for feature subset selection utilizing a
convex hull (or convex polytope). The method searches for
feature space subspaces in which vectors of one class clus-
ter and they are surrounded by vectors of the other class.
The method is applied for selection of color and texture de-
scriptors of capsule endoscope images. The study aims at
finding a small set of descriptors for detection of patholog-
ical changes in the gastrointestinal tract. The results are
compared with results produced by a Support Vector Ma-
chine with the radial basis function kernel.

1 Introduction

Wireless capsule endoscopy [5, 10] (WCE) is a tech-
nique for visualization of internal lumen of gastrointestinal
tract, including a small intestine. Interpretation of the WCE
video sequence involves human expert, is monotonous and
time-consuming task. It requires a high level of concentra-
tion, so as not to miss lesions that might be present in only a
few frames. Therefore, there is a need for automatic meth-
ods which would aid in the investigation by focusing the
attention of the clinician on medically relevant video frag-
ments.

Our approach to the problem of aiding the WCE inter-
pretation utilizes image texture analysis to numerically de-
scribe anatomical structures viewed in the endoscopic im-
ages. We presume there exist texture descriptors which en-
able automatic discrimination between normal and patho-
logically altered tissues [13, 11]. There are programs which
compute image textural features. The MaZda program
[13, 11], which was used in this study, computes several
hundred features per arbitrarily selected region of interest.
The features are texture and color descriptors, and some of
them have ability to discriminate different classes of WCE
images. The main problem is a high dimensionality of fea-
ture space which is difficult for further analysis.

In this study it is proposed to select relevant texture pa-
rameters using a measure which respects a possibility of en-
capsulating all vectors from one chosen pathology type by
a convex hull. Simultaneously, vectors representing other
classes should remain outside the hull. The main motiva-
tion for such an approach is to minimize the rate of false
negative errors committed by the classifier. Since the pro-
cess of convex hull construction largely depends on data
vectors lying closest to the decision boundary, the proposed
method hereafter shall be referred to as Vector Supported
Convex Hull (VSCH). The method not only identifies sig-
nificant parameters, but it also determines a classification
rule based on the mathematical definition of the best found
convex hull.

2 Capsule Endoscopy

The technique of capsule endoscopy facilitates the imag-
ing of the human gastrointestinal system including small in-
testine [5, 10]. The WCE system consists of a pill-shaped
capsule with built-in video camera, light-emitting diodes,
video signal transmitter and battery, as well as a video signal
receiver-recorder device. When the capsule goes through
the small bowel it is propelled by peristaltic movements.
The capsule transmits video data at a rate of two frames
per second for approximately 8 hours. Investigation of the
recorded material requires substantial effort even from a
trained clinician. The diagnostic procedure involves view-
ing the video and searching for pathological changes. It is a
tedious task that usually takes more than an hour.

It arises that a method which would automate the in-
vestigation process would provide significant support to a
diagnostician. Studies described in the literature (e.g. in
[2, 3, 8, 7, 16]) aim at the segmentation of the gastro-
intestinal tract into segments and then denoting the most
relevant ones. For that purpose variety of image features
are used, including color, intensity or selected geometrical
descriptors.

Another method leads to obtaining an image of the bowel
surface [12] by preprocessing the WCE video. Such an im-
age, a bowel map, enables quick examination of the en-
tire recording in terms of completeness and quality. The
map also facilitates the identification of abnormal areas and
helps focusing attention on relevant ones.



In the presented approach we presume that image regions
containing different pathologies and various aspects of nor-
mal mucosal appearance also differ in terms of color and
texture parameters. It is postulated here to compute such
features and then use them for differentiation of image con-
tents.

3 Texture Analysis

A texture is a visualization of complex patterns com-
posed of spatially organized, repeated subpatterns, which
have a characteristic, somewhat uniform appearance. The
local subpatterns within an image are perceived to demon-
strate specific brightness, color size, roughness, directivity,
randomness, smoothness, granulation, etc. A texture may
carry substantial information about the structure of phys-
ical objects. In medical images it may characterize the
structure of human tissues or organs. Consequently, tex-
tural image analysis is an important issue in image process-
ing and understanding in medical applications. To perform
such analysis, mathematically defined texture properties are
computed.

In our study we use MaZda 4.7 software [13, 11] for tex-
tural feature computation. The software is capable of con-
ducting a quantitative analysis of texture within arbitrarily
selected regions of interest (ROI) and can provide an inter-
pretation of the computed results. There are three categories
of feature computation approaches that MaZda utilizes: sta-
tistical (based on image histogram, gradient, co-ocurrence
matrix, run-length matrix), model-based (implementation
of the autoregressive model) and image transform (based on
the Haar wavelet). MaZda may be used to compute textu-
ral descriptors based on color components of a color image,
such as Y, R, G, B, U, V, I, Q, color saturation and hue. The
textural features computed for different color components
can be combined to obtain a comprehensive characteriza-
tion of a colored texture. Therefore, feature vectors com-
puted by MaZda may include over a thousand elements per
individual region of interest. Such a large number of fea-
tures, creating several-hundred-dimensional spaces, are not
easy to handle by statistical analysis or by classifiers.

4 Vector Supported Convex Hull Method

Since the main problem is to find a way of discriminat-
ing between various image classes, the Vector Supported
Convex Hull Method aims at two objectives. The first is to
reduce the dimensionality of the vector space by optimiz-
ing the number of vector features. This goal is achieved
by selection of such subsets of features, which present best
discrimination ability among other feature subsets. Usually
only a limited number of features carry relevant information
needed for discrimination and other features are redundant
for classification. The profit of such selection is that redun-
dant features are not calculated, which saves computation
time.
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Figure 1. Illustration of convex hull method in
2D space (k=2).

The second objective of the VSCH method is to pro-
pose a way for vector classification. The method produces
a number of conditions - inequalities, which define a region
of vectors as belonging to the class of interest. Thus, rules
for classification are formulated throughout these inequali-
ties.

VSCH is a discriminant analysis method of supervised
learning for reduction of vectors dimensionality and data
classification. It aims at finding a subspace in feature vector
space and produces a classification rule to separate the two
classes. To explain the concept of VSCH let us assume input
data consist of two sets (classes) of feature vectors in an n-
dimensional space.All the features are real numbers and the
feature vector space is also real. Moreover, there exists a
k-dimensional subspace (k < n) such that vectors of the set
number one form a cluster surrounded by vectors of the set
number two (cf. Fig. 1).

Θ ⊂ Ω; Θ ∈ Rk; Ω ∈ Rn; k < n. (1)

Let us consider a convex hull of set one in a k-dimensional
subspace of feature vectors space (m < n). The convex
hull can be found by solving a system of equations (2) and
inequality conditions (3).

BTxΘ + b0 = 0, (2a)
‖B‖ = 1 (2b)

BTxΘ + b0 ≤ 0. (3)

Equation (2a) defines a hyperplane in k-dimensional space.
Equation (2b) reduces a number of possible solutions to



two. The equations (2a) and (2b) are solved for k + 1 num-
ber of linearly independent vectors belonging to class num-
ber one. Vector B and parameter b0 are unknowns. There
are two solutions of (2) per each subset of k + 1 vectors.
The boundary of the convex hull is then defined by such so-
lutions, which in addition satisfy inequality (3) for all the
vectors belonging to class one.

Now we define a coefficient Q1. It is the number of vec-
tors belonging to the second class, which also belong to the
convex hull built on class number one. It is the number of
vectors of the second class satisfying inequality (3) defining
the convex hull. The example in 1b shows one such vector.
Therefore, in the case presented in the figure the Q1 = 1.
Generally, the lower the value of Q1, the better class sep-
aration for the analyzed Θ subspace. The next step is to
find a centroid c of the convex hull. Then the convex hull is
isotropically scaled up (cf. Fig. 1c) around the fixed centroid
c of the convex hull. The scaling is an affine transformation
given by Eq. 4.

X∗Q = a(xΘ − c) + c. (4)

The parameter a defines a space enlargement. Parameter a
is a maximum scaling factor for whichQ1 does not increase.
Now we define aQ2 coefficient which is equal to reciprocal
of the parameter a (cf. Fig. 1d also).

Q2 = a−1 =
d

d∗
. (5)

Since, the a parameter is larger than 1, the coefficient Q2

is a fraction. On the other hand coefficient Q1 is an integer
number equal or higher than 1. Now, we combine the two
coefficients and define a comprehensive Q coefficient as:

Q = Q1 +Q2. (6)

The Q specifies discriminative power of k-dimensional fea-
ture space. The lower value of the Q indicates the analyzed
Θ subspace has better class separability. The algorithm for
feature space reduction based on VSCH method was im-
plemented. The algorithm searches 1D, 2D and 3D feature
subsets (Θ subspaces) and computes Q coefficient for each
subset. For further analysis and classification purpose such
subset is chosen, which exposes the lowest Q coefficient.
The algorithm also produces rules of classification. The
rules are given in form of inequalities (3). Inequalities de-
fine boundaries obtained by scaling-up (4) the convex hull
by factor of a/2.

In many medical applications it is crucial not to over-
look any indications of pathology. Such indications usually
are later verified by medical experts and may be rejected.
If they are mistakenly rejected by an automatic method,
an expert may never notice the pathology. Therefore, it
is important to find methods characterized by a minimal
false negative error. The VSCH method reveals a prop-
erty which is particularly useful in biomedical image anal-
ysis.. The method produces classification rules, for which
(for the training set vectors) the false negative error is equal

to zero. The minimization of false positive errors is a sec-
ondary goal, and is achieved directly by minimization of the
Q1 coefficient.

5 Support Vector Machines

The proposed VSCH method presumes specific distri-
bution of vectors. Similar concept underlies a well estab-
lished classification algorithm – Support Vector Machine
(SVM) with the radial basis function (RBF) kernel [15],
which assumes spherical shape of a decision boundary be-
tween two different classes. Thus, it is reasonable to evalu-
ate VSCH performance in comparison with the SVM-RBF
classifier. For the need of the comparative study reported
below, SVM-RBF was employed for both feature selection
and classification tasks.

The SVM itself is a linear classification algorithm. The
constructed decision hyperplane is defined as

y(x) = b+
∑
αi 6=0

αiyixi · x, (7)

where parameters αi and b together with the support vec-
tors xi determine location and orientation of the separat-
ing hyperplane. The learning procedure involves solving
a constrained quadratic optimization problem which leads
to determination of αi coefficients, whose values are non-
zero only for those vectors in a training sample which lie
closest (on either side) to a decision boundary. It must be
noted, that SVM algorithm constructs a hyperplane which
defines the largest margin between different data vectors
classes in a particular feature subspace. In this aspect, the
VSCH method behaves similarly to SVM.

Another attractive property, which SVM possesses, al-
lows its easy extension to non-linearly separable cases. The
dot product (·) in (7) can be replaced by the kernel func-
tion which corresponds to the dot product of data vectors
non-linearly transformed into higher dimensional feature
space. It is expected, that this hypothetical multidimen-
sional space already allows linear discrimination of differ-
ent classes. The main problem which arises here is to find
appropriate transformation of the input data set. This re-
duces to choosing a kernel function for calculation of the
dot product. From the reasons outlined above, in this re-
search the radial basis function was chosen. It is defined
as

k(xi,xj) = exp(−γ‖xi − xj‖2). (8)

However, even if the general form of the kernel function is
known, it still needs to be adjusted to the specific properties
of a given data set. The value of γ coefficient cannot be
determined automatically and several trials must be made
before a trained classifier gains its discriminative power. In
principle the larger γ is, the better accuracy on a training
set is observed. On the other hand, there appears a risk of
overfitting when the value of γ becomes too large. Hence,
in every experiment one must find a good trade-off between
error rate obtained for a training set and generalization ca-
pabilities of a trained SVM.



Figure 2. Example of class one (ulceration).

Figure 3. Examples of class two (normal ap-
pearance of mucosal surface).

6 Experiment

To asses effectiveness of the VCSH method the follow-
ing experiment was devised. Fifty images showing case of
excessive ulceration were selected out of three video files
obtained for three different patients (cf. Fig. 2). Regions
of ulceration (regions of interest) were manually depicted
within the images. For reference, 200 images showing nor-
mal appearance (cf. Fig. 3) of mucosal surface were ran-
domly chosen from other ten videos. Then all the selected
images were divided into circular overlapping subregions,
each of 2009 pixels area. For images showing ulcera-
tions, textural features were computed within circular sub-
regions enclosed within the depicted regions of ulceration.
For other images textural features were computed within
circular subregions enclosed within the image field of view.
Features were computed by means of MaZda program. Fea-
ture vectors included histogram descriptors computed for
14 various color channels as well as gradient, co-ocurrence
matrix, run-length matrix, autoregressive model and Haar
wavelet transform descriptors computed for image bright-
ness (together over 300 features per region).

The number of vectors obtained was over 400 for class
one (ulceration) and over 4800 for class two (normal). After
that, training and testing sets were assembled. Training set
was composed of 109 vectors of class one and 258 vectors

(a)
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Figure 4. Distributions of the training (a) and
the testing (b) vectors in the feature subspace
found by VSCH.

of class two. Testing set was composed of 100 vectors of
class one and 100 vectors of class two. In both cases vec-
tors were picked randomly from the set of all the produced
vectors. Then, VSCH and SVM methods were applied for
attribute subset selection and data classification purpose. In
both applications the goal of feature selection was to find a
pair of features with the highest discrimination ability given
the methods criteria. Feature space exploration was per-
formed using exhaustive search. This eliminates the impact
of local optima of criterion function or randomness associ-
ated with heuristic strategies such as genetic algorithm or
sequential search methods [1, 6, 9].

Based on the training set, the VSCH method selected a
pair of features computed from hue and green color com-
ponents of the image. They are the mean value of the hue
component (X Mean) and a tenth percentile of the green
component (G Perc.10%) computed within the image re-
gion. Fig. 6a presents distribution of the training set vec-
tors within feature space of X Mean, G Perc.10% and addi-
tional W Mean (mean of brightness normalized U compo-
nent). Fig 4b presents distribution of the testing set vectors
within the feature space.

In the case of SVM-based analysis the resulting at-
tribute subspace also consisted of two first-order-histogram
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Figure 5. Distributions of the training (a) and
the testing (b) vectors in the feature subspace
found by SVM-RBF.

features calculated for color components of the images
(W Perc.50% and U Perc.01%). Scatter plots of the train-
ing and testing data vectors in the reduced feature space are
depicted in Fig. 5. The classification specificity, sensitivity,
false positive rate and false negative rate computed for both
selection methods are presented in Table 1.

7 Results discussion and conclusions

Analysis of the obtained results leads to the following
conclusions. First of all, the performed experiments con-
firm that texture analasysis provides a practical numerical
description of the WCE images. It is possible to accurately
classify different types of visualized tissues basing on the

Table 1. Classification results

FPR [%]SpecificityFNR [%]Sensitivity

Training set 9.3 0.907 0.0 1.000
VSCH

Testing set 7.0 0.930 6.0 0.940
Training set 4.3 0.958 6.4 0.936

SVM
Testing set 5.0 0.950 9.0 0.910

selected, most relevant texture parameters. Among the cal-
culated attributes, color component features appear to be the
best at discriminating ulceration and normal regions.

Secondly, the error rates as well as accuracy measures
viewed in Table 1 are comparable for both tested approaches
to feature selection. The VSCH method appears to be
overoptimistic when predicting the False Negative Ratio
(FNR) on the training set. This results directly from the
very nature of the algorithm which aims at construction of
a convex hull arround all vectors from a chosen pathology
class. However, despite the observed increase in FNR cal-
culated for the testing set, it is still lower than the score ob-
tained for the SVM-based method. In the case of the latter,
cost-sensitive learning should be applied to improve its per-
formance with respect to positive class vectors misclassified
as negatives. As it has already been mentioned, missing an
image that contains important diagnostic information im-
plies consequences that are potentially more dangerous for
a patient. The False Positive Ratio (FPR) is not as important
– a diagnostician allways has a chance to disregard images
wrongly marked as containing pathologies. The proposed
VSCH method ensures the desired behaviour without any
explicit weighting of error types.

Eventually, usage of SVM involves problem-specific pa-
rameterization of a kernel function. Frequently, one must
experiment with several values of power exponents (both in
polynomial or radial basis functions) before a final choice
can be made. On the other hand, VSCH is a non-parametric
method and does not require any fine-tuning to solve partic-
ular tasks. Moreover, it does not require any feature space
standardization. Also any other linear transformation of
feature space has no influence on the result produced by
the method.

The presented results constitute a preliminary study on
classification of WCE images basing on their texture para-
maters. This research shall be continued in order to further
validate the proposed approach to feature selection. Furhter
experiments are planned with the use of new sample images,
possibly representing more than two classes.

Acknowledgments.

This work was supported by the Polish Ministry of Science
and Higher Education grant no. 3263/B/T02/2008/35. The
second author is a scholarship holder of the project entitled
”Innovative education. . . ” supported by the European So-
cial Fund.

References

[1] A. L. Blum and P. Langley, ”Selection of relevant features
and examples in machine learning”, Artificial Intelligence,
97, 1997, pp. 245–271.

[2] M. Coimbra, P. Campos, and J. Cunha, ”Extracting clinical
information from endoscopic capsule exams using mpeg-7
visual descriptors”, In Integration of Knowledge, Semantics
and Digital Media Technology, 2005. EWIMT 2005. The 2nd
European Workshop on the, pp. 105–110, 2005.



[3] M. Coimbra and J. Cunha, ”Mpeg-7 visual descriptorscon-
tributions for automated feature extraction in capsule en-
doscopy”, Circuits and Systems for Video Technology, IEEE
Transactions on, 16(5), May 2006, pp. 628–637.

[4] R. Haralick, ”Statistical and structural approaches to tex-
ture”, IEEE Proceedings, 67(5), May 1979, pp. 768–804.

[5] G. Iddan, G. Meron, A. Glukhowsky, and P. Swain, ”Wire-
less capsule endoscopy”, Nature, 405(6785), 2000, pp. 417–
418.

[6] R. Kohavi and G. H. John, ”Wrappers for feature subset se-
lection”, Artificial Intelligence, 97, 1997, pp. 273–324.

[7] M. Mackiewicz, J. Berens, and M. Fisher, ”Wireless capsule
endoscopy video segmentation using support vector clas-
sifiers and hidden markov models”, In Proceedings of the
International Conference on Medical Image Understanding
and Analyses, June 2006.

[8] M. Mackiewicz, J. Berens, M. Fisher, and G. Bell, ”Colour
and texture based gastrointestinal tissue discrimination”,
In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP, vol-
ume 2, pp. 597–600, May 2006.

[9] P. Pudil and P. Somol, ”Current feature selection tech-
niques in statistical pattern recognition”, In M. Kurzynski,
E. Puchala, M. Wozniak, and A. Zolnierek, editors, Com-
puter Recognition Systems, volume 30 of Advances in Sof
Computing. Springer-Verlag, 2005.

[10] P. Swain and A. Fritscher-Ravens, ”Role of video endoscopy
in managing small bowel disease”, GUT, 53, 2004, pp.
1866–1875.

[11] P. Szczypinski. http://www.eletel.p.lodz.pl/MaZda, 2009.
Visited: April 2009.

[12] P. Szczypinski, R.D.Sriram, P. Sriram, and D. Reddy, ”A
model of deformable rings for interpretation of wireless cap-
sule endoscopic videos”, Medical Image Analysis, 13(2),
April 2009, pp. 312–324.

[13] P. Szczypinski, M. Strzelecki, A. Materka, and
A. Klepaczko, ”Mazda - a software package for im-
age texture analysis”, Computer Methods and Programs in
Biomedicine, 94, 2009, pp. 66–76.

[14] M. Tuceryan and A. Jain, The Handbook of Pattern Recogn-
tion and Computer Vision, chapter Texture Analysis, pp.
207–248. World Scientific Publishing Co., 1998.

[15] V. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, New York, 1995.

[16] F. Vilarinao, L. I. Kuncheva, and P. Radeva, ”Roc curves
and video analysis optimization in intestinal capsule en-
doscopy”, Pattern Recogn. Lett., 27(8), 2006, pp. 875–881.


