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Abstract –MaZda, a software package for 2D and 3D image texture analysis is presented. It 

provides a complete path for quantitative analysis of image textures, including computation of 

texture features, procedures for feature selection and extraction, algorithms for data 

classification, various data visualization and image segmentation tools. Initially, MaZda was 

aimed at analysis of magnetic resonance image textures. However, it revealed its effectiveness 

in analysis of other types of textured images, including X-ray and camera images. The 

software was utilized by numerous researchers in diverse applications. It was proven to be an 

efficient and reliable tool for quantitative image analysis, even in more accurate and objective 

medical diagnosis. MaZda was also successfully used in food industry to assess food product 

quality. MaZda can be downloaded for public use from the Institute of Electronics, Technical 

University of Lodz webpage. 

 

Keywords – texture analysis, feature reduction, data classification, image segmentation 

 

1. Introduction  
 

A texture perceived by humans is a visualization of complex patterns composed of spatially 

organized, repeated subpatterns, which have a characteristic, somewhat uniform appearance 

[1]. The local subpatterns within an image are perceived to demonstrate specific brightness, 

color size, roughness, directivity, randomness, smoothness, granulation, etc. A texture may 

carry substantial information about the structure of physical objects. In medical images it 

describes internal structure of human tissues or organs. Consequently, textural image analysis 

is an important issue in image processing and understanding. 

Although textures are easily perceived by humans, there is no strict definition what 

constitutes a texture in image processing terms. Humans usually assess texture only 

qualitatively, while often quantitative texture analysis is required, e.g. in systems for medical 

diagnosis. To perform such quantification, mathematically defined texture properties have to 

be generated by means of texture analysis computer programs. These programs are usually 

based on general purpose software like Matlab [2]. They are capable of solving particular 

problems for particular categories of images with specifically chosen textural properties. If the 

problem or image category differs, such software tools become insufficient. Therefore, a 



choice of other texture descriptors or image analysis methods is necessary, which is a non-

trivial problem. Mazda offers a new approach and seems to be a more appropriate tool to 

perform the task. The software was already utilized in many areas including MRI 

measurement protocol optimization [3], various medical studies [4-16], food quality studies 

[3, 17-19], etc. 

In 1998, the European COST B11 (1998-2002) project was started and one of the 

objectives was the development of methods for quantitative textural analysis of magnetic 

resonance images. At that time there was no commercially available software capable to 

conduct a quantitative analysis of texture within freely selected regions of interest (ROI) and 

to provide an interpretation of computed results. MaZda was the first program created to 

satisfy these objectives. In fact, its development started two years earlier in 1996. It was a 

program for texture analysis in mammogram images [20]. The first version of MaZda 

computed textural features derived from a co-occurrence matrix, which in Polish is named 

Macierz Zdarzeń. The name of the software is an abbreviation of this term. In 1998, several 

procedures developed and implemented in NMRWin [21] program at the German Cancer 

Research Center were adapted and implemented in MaZda. Later, in 1999, procedures for 

statistical and discriminative analysis of feature vectors were developed. For the last ten years 

MaZda has been continuously improved. Within framework of COST B21 project (2003-

2007), MaZda was extended by adding color and 3D image analysis, 2D and 3D image 

segmentation, data classification, analysis automation and other functions.  

The program code has been written in C++ and Delphi™ with the use of OpenGL 

libraries. It has been compiled for computers that use Microsoft Windows® 9x/NT/2000/XP 

operating systems. The package includes two executable files named MaZda (image 

processing and computation of textural features) and b11 (for data visualization, classification 

and segmentation). It has been widely used by participants of COST B11 and B21 projects, 

followed by other collaborating scientists and students in numerous research areas.  

MaZda is accompanied by an open source C++ library (MaZda SDK). It includes 

classes for accessing and storage of images, regions of interest and report files. Thus, by 

means of the available library, MaZda users are able to create their own image analysis 

modules. MaZda can execute such modules and can exchange data with them. Moreover, it 

has a built-in script interpreter engine. As a result, users can define sequences of computations 

to be executed on collections of images. 

There are only few other examples of image texture analysis software available. The 

other non-commercial packages like KeyRes [22] and LS2W [23] provide only a limited 

number of Mazda functionalities. 

KeyRes Co-Occurrence Features is a software which allows estimation of co-

occurrence based texture features for monochrome and color images (after converting into 

grayscale). It supports several basic image formats like TIFF, GIF, JPEG and BMP. Texture 

features are estimated in windows with variable size, for different inter pixel distances for 

evaluation of CO matrix. 3D image visualization, correlation map between estimated features 

and plot, and the features histogram are also available. KeyRes was written using C/C++ 

language and may be run under Matlab environment.  

The LS2W software is a part of WaveThresh3 package for performing statistics based 

on wavelet techniques. The package is an add-on to the popular statistical S-Plus software 

(Insightful Corporation). It includes both various wavelet transforms and a number of 

statistical techniques (also based on wavelet transform). Its applications involve image 

analysis. The LS2W applies the Non-Decimated Wavelet Transform [24]. This transform is 



suitable for a model of locally stationary wavelet processes. In contrast to the traditional, 

frequency-based Cramér representation, this model permits a location-scale decomposition of 

the covariance structure of time series which appear to be stationary within localized regions, 

though their form may evolve from one region to another. Transform coefficients estimated 

by this software are useful for characterization of textures which possesses locally stationary, 

multiscale structure. 

 

2. Image analysis pathways in MaZda 

 

There are several pathways of image analysis that are handled by MaZda package (Fig. 1). 

Starting with the input data, there is a choice between the analysis of 2D grayscale, 2D color 

or 3D grayscale images. MaZda implements procedures for loading of most popular standards 

in MRI. Also it loads Windows Bitmaps, selected Dicom formats or unformatted grey-scale 

image files with pixels intensity encoded with 8 or 16 bits. A user is given a choice between 

analyzing the image as a whole or analyzing freely defined regions of interest. (The region 

has to be shaped by means of MaZda’s 2D or 3D region editors.) Depending on the choice 

made, the results of the image texture analysis are feature distributions within the image 

(feature maps), or text lists of features computed within regions of interest (feature vectors). 

Feature maps may be useful for image segmentation, while the feature vectors for 

classification of image content. 

Feature vectors computed by MaZda include up to several hundred elements per 

individual region of interest. Such a large number of features, creating several-hundred-

dimensional spaces, are not easy to handle by statistical analysis or by classifiers. Thus, 

MaZda employs techniques for reduction of feature vector dimensionality by selecting the 

most discriminative features for further analysis. There are several methods for feature 

selection, using various selection criteria, which can be chosen by the user. 

There are three main pathways of analysis offered by the b11 module. The data 

(feature vectors) can be statistically analyzed and visualized to compute and display relations 

between features and classes of textures. In addition, there are methods implemented for 

supervised and unsupervised classification. The b11 may be used for formulating rules for 

texture classification or designing an artificial neural network classifier. Finally, feature maps 

can be employed for image segmentation. 

 

3. Regions of interest  
 

Regions of interest are sets of pixels in 2D images or voxels in 3D images selected to be 

analyzed. Defining a specific region of interest (ROI) concentrates the computation effort on 

an image fragment that is relevant to the goal of analysis and thus helps to avoid unnecessary 

processing. ROIs are of great interest in biomedical image processing applications. For 

example, tomography images of the human body contain various kinds of organs or tissues. 

To analyze image properties in a selected organ and not in the surrounding tissue, the image 

fragment corresponding to the organ must be defined, as the ROI for the analysis.  

The ROIs in MaZda can be of arbitrary shape. The software allows definition of up to 

16 ROIs within a single image. These regions can overlap if required. If there are more then 

16 regions required for the analysis, they have to be analyzed successively, up to 16 at a time. 

ROIs can be loaded from a file or defined with MaZda ROI editors. To edit 2D ROIs 

(Fig. 2 a), drawing tools for lines (with various line thickness), squares, rectangles, circles, 



ellipses are used. Also, tools based on image grey level thresholding and flood-filling are 

available. Additionally, to process a region shape, tools based on morphological 

transformations such as regions erosion (removes a layer of pixels), dilation (adds a layer of 

pixels), closing (smoothes boundaries, fills-in small holes) or opening (smoothes boundaries, 

removes small groups of pixels) can be used. 

Volumetric ROIs within 3D (Fig. 2 b) images, e.g. images from magnetic resonance or 

computer tomography scanners, can be defined with an appropriate set of tools. The simplest 

way is to assemble ROI from predefined blocks, such as spheres, tubes, cubes and 

tetrahedrons. Blocks can be placed within 3D image space at chosen locations. The 

orientation, size and proportions of blocks can be adjusted freely. Other ways to create 3D 

ROI are to perform image segmentation with the image grey-level thresholding and flood-

filling, or to edit region cross-sections with the 2D ROI editing tools. The most advanced tool 

for 3D region editing implemented in MaZda is the deformable surface [25, 26]. It is a 

mathematical model of an enclosed surface that starts from an ellipsoidal shape and deforms 

upon local image characteristics. The deformation process aims at fitting the surface at 

locations of high image gradient or locations having a gray-level close to the selected 

threshold value. The final shape of the model strongly depends on the initial shape and 

location of the surface, image contrast and some other parameters. Therefore, a deformable 

surface is implemented as an interactive tool allowing the user to adjust these parameters, to 

obtain the most satisfying shape. 

 

4. Textural features 

 

There are three major issues in texture analysis that MaZda assists with. These are: texture 

feature computation, texture segmentation and texture classification. Texture features are 

image characteristics able to numerically describe the image texture properties. Texture 

segmentation is the task of partitioning a textured image into regions, each corresponding to a 

perceptually homogeneous texture. Texture classification determines to which of a finite 

number of physically defined classes a homogeneous texture region belongs. Feature 

computation is usually the first stage of the image texture analysis. The results obtained from 

this stage are used for texture discrimination, classification or segmentation.  

There are three categories of feature computation approaches that MaZda utilizes: 

statistical, model-based and image transform [26]. Statistical approaches represent the texture 

indirectly by the non-deterministic properties that govern the distributions and relationships 

between the grey levels of an image. The model based texture analysis [1], using fractal or 

stochastic models, attempts to interpret an image texture by the use of generative image 

models and stochastic models respectively. Transform methods of texture analysis, such as 

Fourier, Gabor or wavelet transforms [27-29] represent an image in a space with a co-ordinate 

system which is related to the characteristics of a texture.  

The user of MaZda package may select by means of the Options window controls 

groups of features to generate. The choices are: histogram, gradient, co-ocurrence matrix, run-

length matrix, autoregressive model [30] and Haar wavelet [31] groups. 

The most common statistical method for image feature computation is based on image 

first-order histogram. The histogram is computed from the intensity of pixels, without taking 

into consideration any spatial relations between the pixels within the image. Features are 

simply statistical parameters of the histogram distribution such as: mean brightness, variance, 

skewness, kurtosis and percentiles. Another statistical method derives features from the 



gradient magnitude map of the image. Based on the histogram of the image gradient a similar 

feature set is calculated for the image intensity distribution.  

The gray-level co-occurrence matrix (COM or GLCM) is a second-order histogram, 

computed from intensities of pairs of pixels, where the spatial relationship of the two pixels in 

a pair is defined. The COM based features are derived from the matrix to demonstrate 

statistics, such as angular second moment, contrast, correlation, sum of squares, and various 

averages, variances, inverse moments and entropies [32].  

The run-length matrix (RLM) holds counts of pixel runs with the specified gray-scale 

level and length. In MaZda, there are four various run-length matrices computed, for four 

directions of pixel runs: horizontal, vertical, at 45° and at 135°. There are five run-length 

matrix based features computed for each of the matrices: short run emphasis inverse moment, 

long run emphasis moment, grey level nonuniformity, run length nonuniformity and fraction 

of image in runs [32]. 

There are also model-based textural features computed by the software, which are 

based on a first order autoregressive model of the image [30]. The model assumes that pixel 

intensity, in reference to the mean value of image intensity, may be predicted as a weighted 

sum of four neighboring pixel intensities. These neighboring pixels are left, top, top-left and 

top-right adjacent. Therefore, the model has four parameters, which are weights associated to 

these pixels, plus a fifth parameter which is the variance of the minimized prediction error [3, 

30]. 

The transform method of texture analysis implemented in MaZda is based on discrete 

Haar wavelet. The wavelet images are scaled up to five times, both in horizontal and vertical 

direction. It results in image transformation into twenty frequency channels. Energies 

computed within the channels provide data on texture frequency components and are used as 

texture characterizing features. 

To check whether the features characterize an image texture exclusively and do not 

depend on any global image characteristics, such as the overall brightness or contrast, varied 

illumination or some other bias, a normalization procedure has been implemented. 

Normalization reduces dependency of higher order parameters on first order grey-level 

distribution. There are two image histogram normalization options available. One of them 

remaps an image histogram in a range with the mean luminance in the middle and a span of 3 

standard deviations onto the white-to-black gray-scale range. The other remaps an image 

histogram in the range between the first and ninety-ninth percentile onto the white-to-black 

range [33]. The image normalization step is performed prior to the computation of textural 

features.  

The other image transformation that precedes feature computation involves altering 

the number of bits used to encode the image intensity. The number of bits can be set up 

between 4 and 12. This can substantially change number of pixels in runs and the size of the 

co-occurrence matrix for certain images, which in result affects the processing times and 

results of computation based on RLM and COM matrices. Careful adjustment of the number 

of bits can help reduce the effect of random noise influence on texture features. 

Summarizing, Mazda software allows computation of 9 histogram-based textural 

features, 11 co-occurrence-matrix-based features derived from 20 co-occurrence matrices 

produced for 4 directions and 5 inter pixel distances, 5 run-length-matrix-based features at 4 

different directions each, 5 gradient-map-based features, 5 based on autoregressive model and 

up to 20 based on Haar wavelet transform. Altogether 279 descriptors that can characterize a 



grey-scale image texture. All the features can be computed within any ROI of the original 

image or the image after normalization, and with a different number of bits per pixel. 

Methods for textural features computation implemented in MaZda require a gray-scale 

image as an input. On the other hand, it is evident that for camera images color often carries 

essential information required for image differentiation or recognition. MaZda may be used to 

analyze a selected color component (or channel) of the image, not only the image brightness. 

Therefore, there are several options for color to gray-scale transformation available, including 

conversions to Y, R, G, B, U, V, color saturation or hue channels. It is possible to combine 

features computed within different channels of the same image to obtain a comprehensive 

characterization of a color texture.  

The computed feature vectors are presented in the report window (Fig. 3) in a form of 

a spreadsheet (the lower panel of the window). Each column of the table, except the first one, 

represents a region of interest for which the features were computed. The rows correspond to 

the particular features. Each column can be assigned a name, which in the later analysis will 

represent the class that the feature vector (or sample) belongs to. The upper panel of the 

window lists the input image and regions of interest filenames, as well as parameters for 

which the features were computed. The results of each individual analysis instance are 

presented in a separate tab page of the report window.  

 

5. Geometric parameters  
 

Two-dimensional regions of interest, which were primarily planned as masks for textural 

analysis, can be also viewed as images themselves. They represent silhouettes of two-

dimensional objects that they cover and may carry key information for classification of such 

objects. Therefore, another approach for feature computation is to measure characteristics of 

these regions, such as location, orientation, size, geometry and topology descriptors, etc. The 

software computes parameters such as areas, perimeters, various diameters and radix, 

including Feret’s and Martin’s [34], as well as parameters of the inscribed circle, 

circumscribed circle, ellipsis and rectangle. Moreover, it computes various ratios of these 

parameters, like elongation, roundness and compactness. Most of such ratios are size 

invariant. Other size invariant parameters implemented in the software are first and second-

order central moments [34]. The list of geometric parameters computed by MaZda may be 

found on MaZda web page [35]. 

Another group of parameters is based on transformations into a profile (holes are 

removed from a region), into a convex region (concavities are filled in) and skeletonization. 

Skeletonization is implemented through a thinning algorithm that removes outer pixels of a 

region to find its medial axis. The result, called a skeleton, preserves information on the 

region’s topology. The skeletal descriptors computed by MaZda are: length of the skeleton, 

number of branches, branching points and loops, as well as minimal and maximal thickness of 

the body region surrounding the skeleton. 

Such parameters are beneficial in applications where a shape analysis of a given object 

is necessary. For example, selected geometric parameters were estimated to characterize the 

morphological structure of skin mast cells [36]. 

 

 

 

 



6. Feature reduction 

 

Using MaZda, it is possible to produce a substantial set of features potentially carrying 

sufficient information for image texture characterization or region classification. However, 

the achievable number of features computed by MaZda is enormous, reaching a few 

thousands per region of a color image, and consequently difficult to handle. Several-hundred 

features mean analysis of a several-hundred-dimensional space. It would be time consuming, 

inefficient and in some cases not feasible. 

Usually only a limited number of features carry relevant information needed for 

texture discrimination. MaZda allows selection of these features and rejection of the rest. 

There are four selection methods implemented, all being supervised methods i.e. they require 

a-priori knowledge which feature vector or sample belongs to which predefined class. Given 

the information, these methods select a subset of features according to a given mathematical 

criterion. There are four criteria used in MaZda: Fisher score, classification error combined 

with the correlation coefficient, mutual information [33, 37] and a selection of optimal feature 

subsets with minimal classification error of 1-nearest neighbor classifier [38, 39]. 

Figure 4 shows example of sample distributions in two different feature spaces. Each 

sample is represented by a digit symbol. The digits indicate the sample membership to the 

predefined texture class. The first example (Fig. 4. a) shows a feature space of three randomly 

selected features. The features have no ability for discrimination of the four classes as the 

samples are mixed together. The second example (Fig. 4. b) shows a feature space of three 

features selected with one of the automatic methods implemented in MaZda. They satisfy the 

criterion of the minimal classification error when the nearest neighbor classifier is used. Due 

to the high discrimination ability of the chosen features, the samples corresponding to 

particular classes form clear, separate clusters. If the number of selected features is still 

unacceptably large, it is possible to perform its further reduction by transformation of the 

original features into a new space with lower dimensionality. This yields a set of new features, 

reduced in number in comparison to the original feature set. This approach is called feature 

extraction or projection [40]. Procedures implemented in the b11 module comprise principal 

component analysis (PCA) [41], linear discriminant analysis (LDA) [42] and nonlinear 

discriminant analysis (NDA) [39, 42-44]. 

The two described steps of feature reduction, feature selection and feature projection, 

lead to a decrease of the feature space dimensionality. This is usually a necessary step before 

further data analysis, such as classification. None of the implemented methods for feature 

selection or reduction can be viewed as superior to the others. The choice should be made as a 

consequence of actual sample distributions and the choice of a classification method to be 

used. Therefore, the purpose of developing the software is to enable experimenting, 

verification and choosing the best solution to a given problem under consideration. 

 

7. Texture classification 

 

The b11 module allows visualization of sample distributions within a feature space, statistical 

analysis of these distributions and classification of feature vectors. It displays clouds of 

samples presented in one-, two- or three-dimensional space of arbitrarily selected features or 

within a transformed feature space (Fig. 4 a). Samples of different classes are represented 

with distinctive symbols. The user can infer the feasibility of classification by determining 

whether clouds of samples group in separate clusters. 



The b11 implements two procedures for nonlinear supervised classification: 1-nearest 

neighbor (1-NN) classifier and an artificial neural network (ANN). The 1-NN incorporates a 

simple learning algorithm, in which generalization is performed after collecting all the 

training data. During the training phase feature vectors and class labels of the training samples 

are simply stored. In the classification phase, distances from a new sample to all the stored 

feature vectors are computed, the closest sample is found and a new sample is assigned to the 

class of the closest sample from the training set. The ANN implemented in b11 is a feed-

forward network with two hidden layers of neurons. The neuron’s nonlinearity is modeled 

with a sigmoid function. The number of neurons in the hidden layers is adjustable. The user 

should prepare two sets of samples, one for training and another for validation. The training 

procedure fine-tunes neurons for best discrimination of the subsets of the training set. After 

the training, the resulting net should be validated with the second testing set of samples [42-

44]. The resulting net configuration and the results of the training may be stored to a disk file 

for further use. 

The other methods implemented in b11 are useful for unsupervised data classification 

and cluster analysis [39, 45, 46]. These are the agglomerative hierarchical clustering (AHC) 

[45, 46], the similarity-based clustering method (SCM) [47] and k-means algorithm [39]. The 

AHC represents a bottom-up strategy of cluster analysis. The individual samples are at first 

viewed as separate clusters. The clustering algorithm computes distances between pairs of 

clusters in feature space. The distance between two clusters characterizes their dissimilarity. 

Next, the clusters with the lowest dissimilarity are joined together. The process is repeated 

until a single cluster of samples forms.  

The development of AHC can be visualized with a dendrogram (Fig. 5 b), which is a 

hierarchical tree. The tree leaves represent individual samples whereas the branches represent 

links between samples or clusters. The level, at which branches join, represents dissimilarity 

between the joined clusters. The user can adjust the clustering result in two ways: by selecting 

one of four available dissimilarity measures and by defining the dissimilarity level at which 

the dendrogram is split into clusters (sub-trees). 

The SCM defines a continuous, parameterized similarity function, which corresponds 

to the density of samples within the feature space. The number of the local maxima of 

function determines the number of clusters. Each individual sample is iteratively relocated 

within the feature space by the function’s gradient. Eventually, samples reach locations of 

certain maxima of the function, which in turn determine their membership to the 

corresponding clusters. The user can control the result of clustering by adjusting the similarity 

function parameter, which is responsible for the smoothness and the number of maxima of the 

function. 

The third clustering method implemented in b11 utilizes a k-means algorithm. The 

algorithm separates samples into a predefined number of k clusters by minimizing the total 

sum of distances between samples and centers of clusters they are assigned to. To verify the 

result of clustering with the k-means algorithm, the user can examine average silhouette [48] 

plots or the silhouette value. There are as many plots as there are clusters. Plots that resemble 

a rectangle indicate accurate clustering.  

 

8. Feature maps and image segmentation 

 

As already mentioned, MaZda also computes feature distributions within the image (feature 

maps). Each point of a map represents a particular textural feature value that corresponds to a 



given point of a textured image. The map is represented by a grey-scale image, in which a 

textural feature value is depicted by a relative gray level. The feature at a given image 

location is computed within a rectangular region (a mask) centered at this location. The mask 

slides over the image surface by a given vertical and horizontal step in order to fill the whole 

output image with computed feature values. The user can select features for which maps 

should be computed, height and width of the mask and the horizontal and vertical steps. 

Segmentation is an image processing task that partitions the image into separate 

regions, which are in some way homogeneous. The most common segmentation routine is 

performed through image gray level thresholding. In this method, image pixels of intensity 

higher then the threshold level fall into one region, the others fall into the other. 

Unfortunately, if the goal is to segment a texture, the image gray level thresholding alone 

usually fails. Nevertheless, the thresholding can still be effective if preceded by a feature map 

computation. If the feature discriminates two different textures, and then the feature map is 

computed on an image containing such textures, the result would be an image showing one 

texture as a dark area and the other one as a bright area. Therefore, thresholding the brightness 

of the feature map would separate the two textures visible in the input image. A visual 

inspection of maps produced by MaZda allows determining which feature maps can be used 

for texture segmentation.  

To study the feasibility of image texture segmentation based on multiple feature maps, 

an unsupervised method of k-means clustering was implemented in b11 module. The MaZda 

user can load a number of arbitrary selected feature maps, then enter the number of segments 

or texture classes present in the image and run the segmentation algorithm. The result is an 

image that represents individual texture regions with unique colors. 

Figure 6 shows an example of texture image segmentation by means of feature maps. 

The input image consists of two different artificially generated textures. These textures are 

hardly distinguished by a human eye. Moreover, they cannot be immediately segmented by 

simple image segmentation methods such as grey-level thresholding. MaZda introduces an 

intermediate step of image conversion – it computes feature maps. After that, the image 

segmentation becomes feasible with feature map grey-level thresholding or segmentation 

tools implemented in b11.  

 

9. Applications 

 

Since patterns or texture areas appear in almost all biomedical images they can be 

investigated with textural analysis tools, such as MaZda. The software was already utilized in 

many domains including MRI measurement protocol optimization, various medical studies, 

food quality studies and others.  

Within the COST B11 and B21 projects several studies on MRI scanning protocols 

were carried out. To assure the quality and provide means for MRI scanner calibration, test 

objects [3] (phantoms) are used. Such phantoms imitate characteristics of living tissues and 

are visualized with different MRI scanners to produce test images. The images serve for 

quality control of scanners, their testing and for standardization of protocols. The phantoms’ 

images obtained in various medical centers over several years were evaluated and compared 

using MaZda program. These studies show phantoms usefulness for scanner quality testing 

and the phantoms’ invariability in time when used for scanner calibration. 

MaZda was also applied to identify and discriminate biomedical image areas with 

different textural characteristics, such as those that represent healthy and pathological tissues. 



Example studies involved early detection of osteoporotic changes in bones [4-6], detection of 

amygdale activation in rat brains [7], detection and quantification of hipocampal sclerosis [8], 

distinguishing between brain tumors [3], discrimination of healthy and cirrhotic livers [9], 

textural analysis of trabecular bone images targeted at osteoporosis detection [10, 11], 

monitoring of atrophy and regeneration of muscles [12], monitoring of teeth implants [13], 

analysis of myocardium tissue in ultrasound images [14], assessment of cellular necrosis in 

epithelial cell [15] and evaluation of anti-vascular therapy of mammary carcinomas in mice 

[16].  

Figure 7 presents results of forearm bone X-ray images analysis [4]. There are three 

classes of images, healthy, osteopenic and osteoporotic bones, 9 images per class. The 

procedure of textural features computation, feature selection and feature reduction enabled 

determination of the two most discriminative features (MDF) by means of linear discriminant 

analysis. In the presented case, the obtained features allow errorless differentiation between 

the three image classes. 

Texture analysis is useful not only in medicine. Application of such analysis to 

agriculture and food processing industry leads to fruitful results. MaZda tools turned out to be 

useful in discrimination between potato varieties, cooked and raw potatoes [18], analysis of 

the influence of apple ripening process on storage [19], and assessment of soft cheese quality 

[17]. More examples related to MaZda applications can be found in [3]. 

Figure 8 presents results of potato image analysis. Potato samples belonging to four 

potato varieties were examined with a magnetic resonance imaging scanner. The obtained 

images were analyzed with MaZda package. The procedure of textural features computation 

and feature selection led to the conclusion that the examined potato varieties have dissimilar 

structure of storage parenchyma, which results in significant between-classes differences of a 

certain set of textural features. The sample distributions in Fig. 8 show that samples belonging 

to different potato varieties tend to group in specific areas of textural feature space.  

 

10. Conclusions 

 

MaZda package is an efficient and reliable set of tools for analysis of image textures. 

Its efficiency was confirmed by the participants of the COST B11 and B21 projects and other 

researchers who applied this software for many different texture analysis tasks. The methods 

implemented in MaZda and b11 were carefully selected to be useful for 2D and 3D image 

analysis applications. The software implies a functional sequence of actions to perform while 

the choice of such a sequence is not an obvious solution. 

Compared to other texture analysis software, like Keyres [22] or LS2W [23], it 

provides a complete analysis path for texture images, including feature estimation, statistical 

analysis of feature vectors, classification and image segmentation. Additional information 

which includes the list of features produced by MaZda, the list of script instructions, tutorials, 

the manual and executable code is available on the web page [35] of the Institute of 

Electronics, Technical University of Łódź. 
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Fig. 1. Flowchart of analysis pathways in MaZda/b11 package 

 



 

Fig. 2.a 

 

Fig. 2.b 

Fig. 2. Region of interest editors: a) 2D ROI editor with an MRI image of cheeses and b) 3D ROI editor with 

human head volumetric data (a deformable surface net detecting brain boundary) 



 

Fig. 3. The report window of MaZda 
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Fig. 4.a 
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Fig. 4.b 

 

Fig. 4. Sample distributions visualized in 3D feature space: a) randomly selected features and b) features 

selected with the minimal classification error of the nearest neighbor classifier 

 



 

Fig. 5.a 

 

 

Fig. 5.b 

Fig. 5. Samples’ distributions after the linear discriminant analysis (a) and dendrogram of agglomerative 

hierarchical clustering (b) 
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Fig. 6.a 
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Fig. 6.b 

Fig. 6. Illustration of the textured image segmentation procedure by means of texture feature maps: a) 

artificially created image and b) MRI cross-section of brain cortex  

 

 



1 - healthy bone

2 - osteopenic bone

3 - osteoporotic bone
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Fig. 7. Example forearm bone X-ray images [4] and their sample distributions after linear discriminant analysis  
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Fig. 8. Example of four potato varieties MRI scans and their sample distributions in space of three selected, most 

discriminative features 

 

 

 

 


