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Abstract: Center-point model of deformable surface for segmentation of 3D images is
presented. Mobility of each node, element composing the surface, is
constrained in the model to one direction. Also an original formula for image
influence computation is proposed. The model aims at algorithm simplification
and reduction of computational time needed for segmentation of 3D imaging
data acquired from magnetic resonance or computer tomography scanner.
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1. INTRODUCTION

Medical imaging techniques together with computerized image analysis
revolutionized medicine. They have become important tools in medical
diagnosis surgical planning and surgical simulation.

One of important image analysis operations is segmentation: a selection
of image fragment representing objects of study such as an anatomical
organ, its distinguishable part or pathological entity. In many cases these
objects are oval and differ from surroundings with physical properties such
as hardness or water content. Medical imaging techniques measure such
physical properties and present them as a 2D or a 3D image, where the
measurement is usually represented by gray-scale intensity. Therefore,
image regions related to such objects differ from the background with their
intensity.

The center-point model (CPM) of deformable surface is designed with
this kind of images in mind. The CPM aims at computational simplification
of segmentation algorithms based on deformable models and reducing
computational time needed for segmentation of 3D images.
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2. MODEL STRUCTURE

Deformable models for segmentation of digital images usually comprise
nodes. Neighboring nodes are connected to form discrete curves1 or
surfaces2, 3. Image analysis using deformable models is a process of
iterations – called matching process – which systematically displaces nodes
and deforms the model structure to fit a boundary of object of interest.

Usual implementations of deformab1e model1 assume that each node is
assigned vector of coordinates in the space of the investigated image. In
contrast to this idea, CPM node is assigned to fixed half-line4. Half-lines
originate from an arbitrary chosen center point, are radiantly arranged and
semi-equally spaced around this point. Thus, the position of every node s is
given by its distance rs from center point.

(a)                               (b)                                  (c)                                 (d)

Figure 1. Tesselation of center-point model of deformable surface: icosahedron (a), first
subdivision of icosahedron’s faces (b), dual mesh with three-connected nodes (c), half-lines
defining directions of nodes movement in center-point model

Tesselation of CPM surface is based on subdivision of icosahedron faces
(figure 1.a). An icosahedron has a regular structure in an Euclidean 3D
space. It has 12 vertices, where each vertex is connected to five other
vertices forming 20 equilateral triangular faces. Consecutive subdivision of
triangular faces of icosahedron2 into smaller triangles (figure 1.b) increases
the number and density of nodes or vertices. Every new vertex formed in this
way is connected to six other vertices, while the original 12 vertices remain
five-connected. However, also a dual (complementary) form of a mesh
(figure 1.c), in which all the nodes are three-connected, may be applied. The
center of resultant mesh structure is placed at the coordinates of an arbitrary
chosen center-point. The half-line constraining the node movement begins in
the center-point and contains one of the mesh vertices (figure 1.d).

Choosing the right number of subdivisions and the number of nodes is
computation time vs. final result resolution tradeoff. For application of MRI
data segmentation 1000 – 3000 nodes seem adequate.
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3. MATCHING PROCESS

The node has to be pushed toward desired position near the segmentation
boundary. For this reason, an image influence vector is computed according
to local properties of the image at node position. On the other hand,
smoothness of deformable model must be retained, which is satisfied by
modeling tension within surface. The deformable model matching is a
process of successive nodes displacements intended for finding location
where balance between image influence and internal tensions is obtained.
The following three subsections describe the approach implemented in CPM.

3.1 Image Influence

In the current approaches nodes are usually attracted with large image
gradient magnitudes. Hence, initial position of a deformable surface should
be relatively close to the desired solution, i.e. “within range” of the gradient
magnitude function slope. This problem is partly solved in a balloon model6

where some “pressure” forces inflate the model and make it grow until its
nodes reach locations of high gradient magnitudes. Unfortunately, if the
intensity gradient of the boundary is small the balloon will grow without
stopping at all. Moreover, balloon models are vulnerable to image artifacts
and noise, which can cause them to fold and bend incorrectly (figure 2.a).

        
(a)                                           (b)                                        (c)

Figure 2. Examples of magnetic resonance imaging data segmentation with balloon model
(α=0.02, β=0.001, ξ=0.02, τ=16, i=80) (a), center-point model and linear formula of tension
computation (α=0.05, β=0, ξ=0.08, τ=16, i=25) (b), center-point model and formula of tension
computation with linear and cubic components (α=0.05, β=0.001, ξ=0.08, τ=16, i=25) (c)

Let us assume that an object of interest differs from the image
background with its brightness intensity and that some threshold value of
intensity can be found, which roughly separates the object from its
surroundings. Therefore, a simple formula of image influence force can be
applied:

( )τξ −= )( ss rIf
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where ξ is a coefficient defining magnitude and turn of image influence
force, I(rs) is an image intensity at coordinates of a node s and τ is the image
intensity threshold. If the object is brighter than the image background,
parameter ξ should be positive, otherwise negative. This way, force fp pushes
the node outside when the node is inside the object and pulls inside
otherwise.

(a)                              (b)                           (c)                                     (d)

(e)                                           (f)                                        (g)

Figure 3. Phases of magnetic resonance data segmentation process with center-point model:
cross-sections through input data (a), model initialized inside the object of interest (b),
intermediate phase of matching process (c), result of cerebrum segmentation (ξ=0.06, τ=44,
α=0.05, β=0.001, i=250) (d), initialization of surface surrounding the object (e), intermediate
phase (f) and result of segmentation (α=0.05, β=0.001, ξ=0.08, τ=16, i=25) (g)

Consequently, there is no need for computation of an image gradient,
which usually requires considerable computation time. Furthermore, the
surface can be initialized in two ways: inside the object, to grow just like in
balloon model, or it can surround the object at first and then shrink and
tighten around it. This property is quite useful when two different objects,
one inside another, are to be segmented (figure 3).

3.2 Tension

Tension is usually modeled by means of the thin-plate energy function2, 5

or by the linear low-pass filtering of nodes coordinate vectors. In either case,
the effective tension force influencing the node is a linear function of the
node coordinates and coordinates of its neighbors.
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Unfortunately, when applying the linear function for tension
computation, some nodes tend to stop on local and strong image
disturbances, such as MRI artifacts. Eventually, they produce spikes
protruding from elsewhere-smooth surface (figure 2.b). To avoid such an
effect, a nonlinear cubic component is added to the tension force formula.
Still, the formula is simple and results in a reduction of computational time.
The combined formula is:

3
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The equation consists of a linear and a cubic component, where Ns is a
neighborhood of node s. The bracketed part is a difference between average
coordinates of nodes within the neighborhood and coordinate of node s
itself.

If an individual node is stopped on some image disturbance and it stays
far from neighboring nodes, the nonlinear component causes neighboring
nodes to pull it out much stronger than the linear component alone would do
(compare figures  2.b and 2.c).

3.3 Node displacement

For simplicity the following equation for computation of node
displacement is applied in CPM. An index i refers to discrete time.
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4. RESULTS

The CPM of deformable surface was tested on biomedical images
representing human head. Data was acquired from a MRI scanner. Results
presented in figure 2.d and 2.g are obtained with CPMs composed of 1524
nodes. The process of segmentation requires 25 to 250 iterations (120 ms –
1.2 s using a PC with an Intel Centrino MT 1.6 GHz processor). The input
data are comprised of 64 human head cross-sections, 256x256 pixels each,
with 256 gray levels and ratio of voxel dimensions 1:1:2.

The CPM was compared with a balloon model. Tension force in a
balloon model is computed with the same equation as proposed for CPM,
with a coordinate r substituted by vector of 3D space coordinates. Also
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image influence force is computed the same way as for CPM. The direction
of the force influencing the node is specified by average of normal vectors of
faces including this node. It turned out that CPM is at least 20 times faster
then the implemented balloon model. The reason is not only higher number
of equations to be computed per iteration but also a requirement of
decreasing image influence parameter ξ (usually 10 – 40 times) to prevent
surface from undesired folding over (figure 2.a).

5. SUMMARY AND CONCLUSIONS

The problem of surface matching in CPM is reduced from 3D space to
1D space. In addition, the image influence formula is simplified.
Consequently, the model is more efficient in comparison with models based
on gradient computation.

The weaknesses of CPM are a prior need for knowledge on approximate
center of volume to be segmented and limited complexity of shape that can
be attained. Although the model is not limited to convex shapes and some
concave shapes can be segmented, the best results are obtained for oval
objects. However, in such case CPM can be useful for preliminary, rough
segmentation providing valuable initialization data for other models
producing more precise results.
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